論文の概要: Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2403.13039v2
- Date: Tue, 26 Mar 2024 08:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:24:37.970235
- Title: Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition
- Title(参考訳): 顔表情認識のための注意融合型エモティックマスク付きオートエンコーダ
- Authors: Bach Nguyen-Xuan, Thien Nguyen-Hoang, Nhu Tai-Do,
- Abstract要約: 本稿では,MAE-Face self-supervised learning (SSL) 法とFusion Attention Mechanismを併用した表現分類手法を提案する。
そこで本研究では,顔の特徴を強調する前処理手法を提案し,トレーニングと検証の双方におけるモデル性能を向上させる。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial Expression Recognition (FER) is a critical task within computer vision with diverse applications across various domains. Addressing the challenge of limited FER datasets, which hampers the generalization capability of expression recognition models, is imperative for enhancing performance. Our paper presents an innovative approach integrating the MAE-Face self-supervised learning (SSL) method and Fusion Attention mechanism for expression classification, particularly showcased in the 6th Affective Behavior 32 pages harvmac; added references for section 5Analysis in-the-wild (ABAW) competition. Additionally, we propose preprocessing techniques to emphasize essential facial features, thereby enhancing model performance on both training and validation sets, notably demonstrated on the Aff-wild2 dataset.
- Abstract(参考訳): 表情認識(FER)はコンピュータビジョンにおける重要な課題であり、様々な領域にまたがる多様な応用がある。
表現認識モデルの一般化能力を損なうような限られたFERデータセットの課題に対処することは、性能向上に不可欠である。
本稿では,第6回Affective Behavior 32 Page harvmac で紹介されている MAE-Face Self-supervised Learning (SSL) 手法とFusion Attention 機構を統合した革新的なアプローチを提案する。
さらに,Aff-wild2データセットで顕著に示されたトレーニングセットと検証セットのモデル性能を向上させるために,重要な顔特徴を強調する前処理手法を提案する。
関連論文リスト
- Exploring Facial Expression Recognition through Semi-Supervised Pretraining and Temporal Modeling [8.809586885539002]
本稿では,第6回ABAW(Affective Behavior Analysis in-the-Wild)コンペティションについて述べる。
第6回ABAWコンペティションでは,オフィシャル検証セットにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2024-03-18T16:36:54Z) - Faceptor: A Generalist Model for Face Perception [52.8066001012464]
Faceptorは、よく設計されたシングルエンコーダのデュアルデコーダアーキテクチャを採用するために提案されている。
Faceptorへのレイヤアテンションにより、モデルが最適なレイヤから機能を適応的に選択して、望ましいタスクを実行することができる。
我々のトレーニングフレームワークは補助的な教師付き学習にも適用でき、年齢推定や表現認識といったデータスパースタスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-14T15:42:31Z) - Exploring Large-scale Unlabeled Faces to Enhance Facial Expression
Recognition [12.677143408225167]
本研究では、ラベルのない顔データを用いて表現認識モデルを効果的に訓練する半教師付き学習フレームワークを提案する。
本手法では,顔認識データを完全に活用するために,信頼度を適応的に調整できる動的しきい値モジュールを用いる。
ABAW5 EXPRタスクでは,オフィシャル検証セットにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2023-03-15T13:43:06Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Deep Collaborative Multi-Modal Learning for Unsupervised Kinship
Estimation [53.62256887837659]
キンシップ検証は、コンピュータビジョンにおける長年の研究課題である。
本稿では,顔特性に表される基礎情報を統合するために,新しい協調型多モーダル学習(DCML)を提案する。
我々のDCML法は、常に最先端のキンシップ検証法よりも優れている。
論文 参考訳(メタデータ) (2021-09-07T01:34:51Z) - Self-supervised Contrastive Learning of Multi-view Facial Expressions [9.949781365631557]
顔表情認識(FER)は,人間とコンピュータのインタラクションシステムにおいて重要な構成要素である。
本稿では,多視点表情のコントラスト学習(CL-MEx)を提案する。
論文 参考訳(メタデータ) (2021-08-15T11:23:34Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。