論文の概要: WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV
- arxiv url: http://arxiv.org/abs/2405.11255v1
- Date: Sat, 18 May 2024 10:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:38:17.605245
- Title: WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV
- Title(参考訳): WisPerMed at "Discharge Me!": 大規模言語モデルによる医療におけるテキスト生成の促進, 動的専門家選択, MIMIC-IVによるプライミング技術
- Authors: Hendrik Damm, Tabea M. G. Pakull, Bahadır Eryılmaz, Helmut Becker, Ahmad Idrissi-Yaghir, Henning Schäfer, Sergej Schultenkämper, Christoph M. Friedrich,
- Abstract要約: 本研究は, アウトレット・サマリーの「Brief Hospital Course」と「Discharge Instructions」を自動生成するために, 最先端の言語モデルを活用することを目的としている。
医療施設において, 自動化がドキュメンテーションの精度を向上し, クリニックのバーンアウトを緩和し, 運用効率を向上させる方法について検討した。
- 参考スコア(独自算出の注目度): 0.38084074204911494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study aims to leverage state of the art language models to automate generating the "Brief Hospital Course" and "Discharge Instructions" sections of Discharge Summaries from the MIMIC-IV dataset, reducing clinicians' administrative workload. We investigate how automation can improve documentation accuracy, alleviate clinician burnout, and enhance operational efficacy in healthcare facilities. This research was conducted within our participation in the Shared Task Discharge Me! at BioNLP @ ACL 2024. Various strategies were employed, including few-shot learning, instruction tuning, and Dynamic Expert Selection (DES), to develop models capable of generating the required text sections. Notably, utilizing an additional clinical domain-specific dataset demonstrated substantial potential to enhance clinical language processing. The DES method, which optimizes the selection of text outputs from multiple predictions, proved to be especially effective. It achieved the highest overall score of 0.332 in the competition, surpassing single-model outputs. This finding suggests that advanced deep learning methods in combination with DES can effectively automate parts of electronic health record documentation. These advancements could enhance patient care by freeing clinician time for patient interactions. The integration of text selection strategies represents a promising avenue for further research.
- Abstract(参考訳): 本研究の目的は,MIMIC-IVデータセットからの退院サマリーの「Brief Hospital Course」および「Discharge Instructions」セクションの自動生成に最先端の言語モデルを活用することであり,臨床医の業務負担を軽減することである。
医療施設において, 自動化がドキュメンテーションの精度を向上し, クリニックのバーンアウトを緩和し, 運用効率を向上させる方法について検討した。
The Shared Task Discharge Me! at BioNLP @ ACL 2024。
必要なテキストセクションを生成することができるモデルを開発するために、数発の学習、命令チューニング、動的エキスパート選択(DES)など、様々な戦略が採用された。
特に、追加の臨床領域固有のデータセットを利用することで、臨床言語処理を増強する有意義な可能性を証明した。
テキスト出力の選択を複数の予測から最適化するDES法は,特に有効であることが証明された。
総合スコアは0.332で、シングルモデルのアウトプットを上回った。
この発見は、DESと組み合わせた高度なディープラーニング手法が、電子健康記録文書の一部を効果的に自動化できることを示唆している。
これらの進歩は、患者の相互作用のためのクリニックタイムを解放することで、患者のケアを強化する可能性がある。
テキスト選択戦略の統合は、さらなる研究のための有望な道のりを表している。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Harmonising the Clinical Melody: Tuning Large Language Models for Hospital Course Summarisation in Clinical Coding [5.279406017862076]
病院のコースをまとめることの課題は、さらなる研究と開発のためのオープンな領域のままである。
Llama 3, BioMistral, Mistral Instruct v0.1 の3種類のプレトレーニング LLM を病院コース要約作業に適用した。
臨床領域の微調整の有効性を評価するため,BERTScoreおよびROUGE測定値を用いて微調整モデルの評価を行った。
論文 参考訳(メタデータ) (2024-09-23T00:35:23Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Automated Information Extraction from Thyroid Operation Narrative: A Comparative Study of GPT-4 and Fine-tuned KoELECTRA [1.137357582959183]
本研究は, GPT-4モデルと比較し, 微調整KoELECTRAモデルの変形特性に着目した。
この研究は、高度な自然言語処理(NLP)技術を活用し、より高度なデータ処理システムへのパラダイムシフトを促進する。
論文 参考訳(メタデータ) (2024-06-12T06:44:05Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
本稿では,Large Language Models(LLMs)を利用した名前付きエンティティ認識(NER)アプローチであるGAMedXを紹介する。
この方法論は、NERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖プロンプトとピダンティックスキーマを構造化出力に利用している。
その結果, 評価データセットの1つに対して, 98%の精度でROUGE F1の有意なスコアが得られた。
論文 参考訳(メタデータ) (2024-05-31T02:53:22Z) - NOTE: Notable generation Of patient Text summaries through Efficient
approach based on direct preference optimization [0.0]
NOTE」は「直接選好最適化に基づく効率的なアプローチによる患者テキスト要約の不適切な生成」の意。
患者イベントは順次組み合わせられ、各入院の退院の概要を生成するために使用される。
ノートは、サマリーを放出するだけでなく、患者の旅行を通して様々なサマリーを生成するために利用することができる。
論文 参考訳(メタデータ) (2024-02-19T06:43:25Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。