論文の概要: Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches
- arxiv url: http://arxiv.org/abs/2404.14779v1
- Date: Tue, 23 Apr 2024 06:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 15:00:46.315272
- Title: Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches
- Title(参考訳): Med42 -- 医療用LLMのための微調整戦略の評価:フルパラメータ対パラメータ効率のアプローチ
- Authors: Clément Christophe, Praveen K Kanithi, Prateek Munjal, Tathagata Raha, Nasir Hayat, Ronnie Rajan, Ahmed Al-Mahrooqi, Avani Gupta, Muhammad Umar Salman, Gurpreet Gosal, Bhargav Kanakiya, Charles Chen, Natalia Vassilieva, Boulbaba Ben Amor, Marco AF Pimentel, Shadab Khan,
- Abstract要約: 我々は,Llama-2アーキテクチャに基づく医療用大規模言語モデル(LLM)を開発し,改良した。
本実験は,様々な医用ベンチマークを用いて,これらのチューニング戦略の有効性を体系的に評価した。
- 参考スコア(独自算出の注目度): 7.3384872719063114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a comprehensive analysis and comparison of two predominant fine-tuning methodologies - full-parameter fine-tuning and parameter-efficient tuning - within the context of medical Large Language Models (LLMs). We developed and refined a series of LLMs, based on the Llama-2 architecture, specifically designed to enhance medical knowledge retrieval, reasoning, and question-answering capabilities. Our experiments systematically evaluate the effectiveness of these tuning strategies across various well-known medical benchmarks. Notably, our medical LLM Med42 showed an accuracy level of 72% on the US Medical Licensing Examination (USMLE) datasets, setting a new standard in performance for openly available medical LLMs. Through this comparative analysis, we aim to identify the most effective and efficient method for fine-tuning LLMs in the medical domain, thereby contributing significantly to the advancement of AI-driven healthcare applications.
- Abstract(参考訳): 本研究は,医学大言語モデル(LLM)の文脈における2つの主要な微調整手法 – フルパラメータ微調整とパラメータ効率調整 – の包括的分析と比較を行った。
我々は,Llama-2アーキテクチャに基づいて,医学知識検索,推論,質問応答能力の向上を目的とした一連のLLMを開発し,改良した。
本実験は,様々な医用ベンチマークを用いて,これらのチューニング戦略の有効性を体系的に評価した。
特に,我々の医療用LLM Med42はUSMLEデータセットで72%の精度を示し,公開医療用LLMの新たな性能基準を設定した。
この比較分析により、医療領域におけるLLMを微調整する最も効果的かつ効率的な方法を特定し、AI駆動型医療応用の進歩に大きく貢献することを目指している。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
本稿では,大言語モデル(LLM)を臨床試験検索プロセスに統合するシステムを提案する。
クエリ生成には6つのLCMを評価し,最小限の計算資源を必要とする,オープンソースと比較的小さなモデルに着目した。
論文 参考訳(メタデータ) (2024-10-31T12:01:51Z) - Language Models And A Second Opinion Use Case: The Pocket Professional [0.0]
本研究は、専門的な意思決定において、正式な第二意見ツールとして、LLM(Large Language Models)の役割を検証する。
この研究は、20ヶ月にわたるMedscapeからの183の挑戦的な医療事例を分析し、クラウドソースされた医師の反応に対して複数のLSMのパフォーマンスをテストした。
論文 参考訳(メタデータ) (2024-10-27T23:48:47Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
論文 参考訳(メタデータ) (2024-06-10T14:47:04Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications [57.342772288710044]
我々はMOELoRAと呼ばれるマルチタスク医療応用のためのパラメータ効率の良い微調整フレームワークを提案する。
MOEとLoRAを統一するために、トレーニング可能なパラメータとして複数の専門家を考案し、トレーニング可能なパラメータの小さなサイズを保持するために、各専門家は2つの低ランク行列から構成される。
マルチタスク医療データセットを用いて実験を行い、MOELoRAが既存のパラメータを効率よく微調整する手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-21T17:18:09Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
大型言語モデル(LLM)はしばしば幻覚に悩まされ、過度に自信があるが誤った判断を下す。
本稿では,マルチターンコンサルテーションにおける仮想医師としてのLCMの実用能力を評価するための自動評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-05T09:24:48Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。