論文の概要: Function Trees: Transparent Machine Learning
- arxiv url: http://arxiv.org/abs/2403.13141v1
- Date: Tue, 19 Mar 2024 20:23:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:37:24.154962
- Title: Function Trees: Transparent Machine Learning
- Title(参考訳): 関数木: 透過的な機械学習
- Authors: Jerome H. Friedman,
- Abstract要約: このような関数のグローバルな性質を知ることは、データを生成するシステムを理解するのに役立つ。
関数ツリーは、関数のメインとインタラクションのすべての効果を素早く識別し、計算するために使用することができる。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The output of a machine learning algorithm can usually be represented by one or more multivariate functions of its input variables. Knowing the global properties of such functions can help in understanding the system that produced the data as well as interpreting and explaining corresponding model predictions. A method is presented for representing a general multivariate function as a tree of simpler functions. This tree exposes the global internal structure of the function by uncovering and describing the combined joint influences of subsets of its input variables. Given the inputs and corresponding function values, a function tree is constructed that can be used to rapidly identify and compute all of the function's main and interaction effects up to high order. Interaction effects involving up to four variables are graphically visualized.
- Abstract(参考訳): 機械学習アルゴリズムの出力は通常、入力変数の1つ以上の多変量関数で表される。
このような関数のグローバルな性質を知ることは、データを生成するシステムを理解するのに役立ち、対応するモデル予測を解釈し説明するのに役立ちます。
より単純な関数のツリーとして、一般的な多変量関数を表現するための方法が提示される。
この木は、入力変数のサブセットの結合影響を発見し、記述することで、関数のグローバルな内部構造を公開する。
入力値と対応する関数値が与えられたとき、関数ツリーが構築され、関数の主および相互作用効果のすべてを高速に識別し、高次まで計算することができる。
最大4変数の相互作用効果をグラフィカルに視覚化する。
関連論文リスト
- Compositional learning of functions in humans and machines [23.583544271543033]
我々は,構成関数を用いた学習と推論において,人間とニューラルネットワークモデルの能力を探るための関数学習パラダイムを開発する。
その結果,人間は相互作用条件をまたいだ新しい視覚機能合成をゼロショットで一般化できることが示唆された。
同じタスクにおけるニューラルネットワークモデルとの比較により、合成性(MLC)アプローチのメタラーニングを通じて、標準的なシーケンス対シーケンス変換器は、構成関数における人間の一般化パターンを模倣することができることが明らかになった。
論文 参考訳(メタデータ) (2024-03-18T19:22:53Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - Interpretability with full complexity by constraining feature
information [1.52292571922932]
解釈可能性(Interpretability)は、機械学習の課題だ。
我々は、新しい角度から解釈可能性にアプローチする:モデルの複雑さを制限することなく、特徴に関する情報を制約する。
近似モデルのスペクトルから洞察を抽出する枠組みを開発する。
論文 参考訳(メタデータ) (2022-11-30T18:59:01Z) - Unifying local and global model explanations by functional decomposition
of low dimensional structures [0.0]
回帰関数や分類関数のグローバルな説明を主成分と相互作用成分の和に分解して考える。
ここで、qは分解に存在する相互作用の最高位を表す。
論文 参考訳(メタデータ) (2022-08-12T07:38:53Z) - Neural Network Approximation of Refinable Functions [8.323468006516018]
本研究では, 深部ReLUネットワークの出力幅が一定であり, 精度指数で深部を増大させることにより, 精錬可能関数が近似可能であることを示す。
本研究は,ウェーブレットの標準構成に使用される関数と,コンピュータ支援幾何設計における部分分割アルゴリズムを用いて構築される関数に適用する。
論文 参考訳(メタデータ) (2021-07-28T06:45:36Z) - Learning Aggregation Functions [78.47770735205134]
任意の濃度の集合に対する学習可能なアグリゲータであるLAF(Learning Aggregation Function)を紹介する。
半合成および実データを用いて,LAFが最先端の和(max-)分解アーキテクチャより優れていることを示す実験を報告する。
論文 参考訳(メタデータ) (2020-12-15T18:28:53Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - Measure Inducing Classification and Regression Trees for Functional Data [0.0]
機能的データ分析の文脈における分類と回帰問題に対する木に基づくアルゴリズムを提案する。
これは、制約付き凸最適化により重み付き汎函数 L2$ 空間を学習することで達成される。
論文 参考訳(メタデータ) (2020-10-30T18:49:53Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
学習可能な関数のクラスが任意の有効な強度関数を普遍的に近似できることを示す。
ニューラルポイントプロセスモデルであるUNIPointを実装し,各イベントの基底関数の和をパラメータ化するために,リカレントニューラルネットワークを用いた。
論文 参考訳(メタデータ) (2020-07-28T09:31:56Z) - From Sets to Multisets: Provable Variational Inference for Probabilistic
Integer Submodular Models [82.95892656532696]
サブモジュール関数は機械学習やデータマイニングにおいて広く研究されている。
本研究では,整数部分モジュラ函数に対する連続DR-部分モジュラ拡張を提案する。
整数部分モジュラー関数によって定義される新しい確率モデルを定式化する。
論文 参考訳(メタデータ) (2020-06-01T22:20:45Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。