論文の概要: SIFT-DBT: Self-supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification
- arxiv url: http://arxiv.org/abs/2403.13148v1
- Date: Tue, 19 Mar 2024 20:52:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:37:24.151869
- Title: SIFT-DBT: Self-supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification
- Title(参考訳): SIFT-DBT:不均衡な乳房共生画像分類のための自己教師付き初期化と微調整
- Authors: Yuexi Du, Regina J. Hooley, John Lewin, Nicha C. Dvornek,
- Abstract要約: 乳がん検診・診断において,Digital Breast Tomo synthesis (DBT) が広く用いられている。
画像の異常を識別するために,ビューレベルのコントラスト型自己監督初期化とファインチューニングを用いた新しい手法を提案する。
提案手法は92.69%の量的AUCを970のユニークな研究で評価する。
- 参考スコア(独自算出の注目度): 3.665816629105171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital Breast Tomosynthesis (DBT) is a widely used medical imaging modality for breast cancer screening and diagnosis, offering higher spatial resolution and greater detail through its 3D-like breast volume imaging capability. However, the increased data volume also introduces pronounced data imbalance challenges, where only a small fraction of the volume contains suspicious tissue. This further exacerbates the data imbalance due to the case-level distribution in real-world data and leads to learning a trivial classification model that only predicts the majority class. To address this, we propose a novel method using view-level contrastive Self-supervised Initialization and Fine-Tuning for identifying abnormal DBT images, namely SIFT-DBT. We further introduce a patch-level multi-instance learning method to preserve spatial resolution. The proposed method achieves 92.69% volume-wise AUC on an evaluation of 970 unique studies.
- Abstract(参考訳): デジタル乳房共生(Digital Breast Tomo synthesis、DBT)は、乳がんのスクリーニングと診断に広く用いられている医療画像のモダリティであり、3Dライクな乳房容積イメージング機能により、より高解像度で詳細な画像を提供する。
しかし、データ量の増加はデータ不均衡の顕著な課題も引き起こし、ボリュームのごく一部に不審な組織が含まれている。
これにより、実世界のデータにおけるケースレベルの分布によるデータの不均衡がさらに悪化し、多数派のみを予測する自明な分類モデルを学ぶことができる。
そこで本研究では,ビューレベルのコントラスト型自己監督初期化とファインチューニングを用いて,異常なDBT画像(SIFT-DBT)を識別する手法を提案する。
さらに,空間分解能を維持するためのパッチレベルのマルチインスタンス学習手法を提案する。
提案手法は92.69%の量的AUCを970のユニークな研究で評価する。
関連論文リスト
- Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
3DUSにおける楽器セグメンテーションのための半教師付き学習フレームワークを提案する。
SSL学習を実現するため、Dual-UNetが提案されている。
提案手法は,Diceの約68.6%-69.1%,推定時間約1秒を実現している。
論文 参考訳(メタデータ) (2021-07-30T07:59:45Z) - Artificial Intelligence Methods Based Hierarchical Classification of
Frontotemporal Dementia to Improve Diagnostic Predictability [0.0]
Frontotemporal Dementia(FTD)患者は、認知能力、エグゼクティブおよび行動特性、言語能力の喪失、および記憶能力の低下を損ないました。
本研究の目的は、皮質厚さデータに人工知能(AI)のデータ駆動技術を適用することにより、各被験者のMRI画像をFTDのスペクトルの1つに階層的に分類することである。
自動分類モデルでは, 支持ベクトルマシン (SVM) , 線形判別分析 (LDA) , ナイブベイズ法 (Naive Bayes) が10倍のクロスバリデーション解析でそれぞれ86.5, 76, 72.7の分類精度を得た。
論文 参考訳(メタデータ) (2021-04-12T07:04:11Z) - Breast mass detection in digital mammography based on anchor-free
architecture [0.4568777157687961]
BMassDNet(Breast Mass Detection Network)と呼ばれる一段階の物体検出アーキテクチャを提案する。
BMassDNetはアンカーフリーで特徴ピラミッドに基づいており、異なる大きさの乳房の質量を検出する。
提案するBMassDNetは,現在最上位の手法よりも競合検出性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-02T07:11:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - Adaptation of a deep learning malignancy model from full-field digital
mammography to digital breast tomosynthesis [3.8954120406920336]
デジタル乳房トモシンセシス (DBT) は, 感度と特異性を高めることにより, 従来のマンモグラフィーを改善する。
深層学習(DL)モデルは主に2次元フルフィールドデジタルマンモグラフィ(FFDM)やスキャンされたフィルム画像に基づいて開発されている。
論文 参考訳(メタデータ) (2020-01-23T05:44:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。