論文の概要: VL-ICL Bench: The Devil in the Details of Benchmarking Multimodal In-Context Learning
- arxiv url: http://arxiv.org/abs/2403.13164v1
- Date: Tue, 19 Mar 2024 21:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:37:24.139248
- Title: VL-ICL Bench: The Devil in the Details of Benchmarking Multimodal In-Context Learning
- Title(参考訳): VL-ICL Bench:マルチモーダルインコンテキストラーニングのベンチマークの詳細
- Authors: Yongshuo Zong, Ondrej Bohdal, Timothy Hospedales,
- Abstract要約: 大規模言語モデル(LLM)は、創発的な文脈内学習(ICL)を示すことで有名である。
本研究では,マルチモーダルインコンテキスト学習のためのベンチマークVL-ICL Benchを提案する。
我々は,このベンチマークスイートに対して最先端のVLLMの能力を評価する。
- 参考スコア(独自算出の注目度): 12.450293825734313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) famously exhibit emergent in-context learning (ICL) -- the ability to rapidly adapt to new tasks using few-shot examples provided as a prompt, without updating the model's weights. Built on top of LLMs, vision large language models (VLLMs) have advanced significantly in areas such as recognition, reasoning, and grounding. However, investigations into \emph{multimodal ICL} have predominantly focused on few-shot visual question answering (VQA), and image captioning, which we will show neither exploit the strengths of ICL, nor test its limitations. The broader capabilities and limitations of multimodal ICL remain under-explored. In this study, we introduce a comprehensive benchmark VL-ICL Bench for multimodal in-context learning, encompassing a broad spectrum of tasks that involve both images and text as inputs and outputs, and different types of challenges, from {perception to reasoning and long context length}. We evaluate the abilities of state-of-the-art VLLMs against this benchmark suite, revealing their diverse strengths and weaknesses, and showing that even the most advanced models, such as GPT-4, find the tasks challenging. By highlighting a range of new ICL tasks, and the associated strengths and limitations of existing models, we hope that our dataset will inspire future work on enhancing the in-context learning capabilities of VLLMs, as well as inspire new applications that leverage VLLM ICL. The code and dataset are available at https://github.com/ys-zong/VL-ICL.
- Abstract(参考訳): 大規模言語モデル(LLM)は、モデルの重みを更新することなく、プロンプトとして提供される少数ショット例を使用して、新しいタスクに迅速に適応する能力である、創発的なインコンテキスト学習(ICL)を示すことで有名である。
LLM上に構築された視覚大言語モデル(VLLM)は、認識、推論、接地といった分野で大きく進歩している。
しかし、emph{multimodal ICL} の調査は、主に数発の視覚的質問応答(VQA)と画像キャプションに焦点を合わせており、ICL の強みを活用せず、その限界もテストしない。
マルチモーダルICLのより広範な機能と限界は、まだ未調査のままである。
本研究では,マルチモーダル・インコンテキスト学習のための総合ベンチマークVL-ICL Benchを導入し,画像とテキストの両方を入力や出力として含むタスクの幅広い範囲を包含する。
我々は、このベンチマークスイートに対して最先端のVLLMの能力を評価し、その多様な長所と短所を明らかにし、GPT-4のような最も先進的なモデルでさえ課題を見出すことを示した。
さまざまな新しいICLタスクと既存のモデルの強みと制限を強調して、私たちのデータセットがVLLMのコンテキスト内学習能力を向上し、VLLM ICLを利用する新しいアプリケーションに刺激を与えることを期待しています。
コードとデータセットはhttps://github.com/ys-zong/VL-ICLで公開されている。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - Towards Multimodal In-Context Learning for Vision & Language Models [21.69457980865084]
VLM(State-of-the-the-art Vision-Language Models)は、ビジョンと言語のモダリティを基盤としている。
本稿では, 効果的なデータ混合を用いた, 単純かつ驚くほど効果的なマルチターンカリキュラムベースの学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T13:53:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
VLIT(Vision-Language Instruction Tuning)は、純粋なテキスト命令チューニングよりも複雑な特徴を示す。
既存のVLITデータセットの詳細な分類と、高品質なVLITデータが持つべき特性を識別する。
これらの特徴を既存のVLITデータ構築プロセスに導出する原理として取り入れることで、我々は広範囲な実験を行い、調整されたマルチモーダルLCMの性能に対する肯定的な影響を検証した。
論文 参考訳(メタデータ) (2023-11-14T14:02:32Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning [42.68425777473114]
大規模言語モデル(LLM)によって強化された視覚言語モデル(VLM)は、急速に人気が高まっている。
マルチモーダル・インコンテキスト・ラーニング(MMICL)を用いた視覚言語モデルを導入し,VLMがマルチモーダル入力を効率的に処理できるようにする。
実験により,MMICLは多種多様な視覚言語タスクにおいて,最先端のゼロショット性能を実現することを確認した。
論文 参考訳(メタデータ) (2023-09-14T17:59:17Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Link-Context Learning for Multimodal LLMs [40.923816691928536]
リンクコンテキスト学習(LCL)はMLLMの学習能力を高めるために「原因と効果からの推論」を強調する。
LCLは、アナログだけでなく、データポイント間の因果関係も識別するようモデルに導出する。
本手法の評価を容易にするため,ISEKAIデータセットを提案する。
論文 参考訳(メタデータ) (2023-08-15T17:33:24Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。