Creative and Correct: Requesting Diverse Code Solutions from AI Foundation Models
- URL: http://arxiv.org/abs/2403.13259v1
- Date: Wed, 20 Mar 2024 02:51:46 GMT
- Title: Creative and Correct: Requesting Diverse Code Solutions from AI Foundation Models
- Authors: Scott Blyth, Markus Wagner, Christoph Treude,
- Abstract summary: In software engineering tasks, diversity is key to exploring design spaces and fostering creativity.
Our study systematically investigates this trade-off using experiments with HumanEval tasks.
We identify combinations of parameters and strategies that strike an optimal balance between diversity and correctness.
- Score: 8.40868688916685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI foundation models have the capability to produce a wide array of responses to a single prompt, a feature that is highly beneficial in software engineering to generate diverse code solutions. However, this advantage introduces a significant trade-off between diversity and correctness. In software engineering tasks, diversity is key to exploring design spaces and fostering creativity, but the practical value of these solutions is heavily dependent on their correctness. Our study systematically investigates this trade-off using experiments with HumanEval tasks, exploring various parameter settings and prompting strategies. We assess the diversity of code solutions using similarity metrics from the code clone community. The study identifies combinations of parameters and strategies that strike an optimal balance between diversity and correctness, situated on the Pareto front of this trade-off space. These findings offer valuable insights for software engineers on how to effectively use AI foundation models to generate code solutions that are diverse and accurate.
Related papers
- Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
In real-world applications, users often favor structurally diverse design choices over one high-quality solution.
This paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold.
arXiv Detail & Related papers (2024-08-29T09:55:55Z) - Large Language Models as In-context AI Generators for Quality-Diversity [8.585387103144825]
In-context QD aims to generate interesting solutions using few-shot and many-shot prompting with quality-diverse examples from the QD archive as context.
In-context QD displays promising results compared to both QD baselines and similar strategies developed for single-objective optimization.
arXiv Detail & Related papers (2024-04-24T10:35:36Z) - Testing for Fault Diversity in Reinforcement Learning [13.133263651395865]
We argue that policy testing should not find as many failures as possible (e.g., inputs that trigger similar car crashes) but rather aim at revealing as informative and diverse faults as possible in the model.
We show that QD optimisation, while being conceptually simple and generally applicable, finds effectively more diverse faults in the decision model.
arXiv Detail & Related papers (2024-03-22T09:46:30Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - Diversity in Kemeny Rank Aggregation: A Parameterized Approach [3.6603644500568806]
A recent trend in artificial intelligence, called solution diversity, has focused on the development of notions of optimality.
In this work, we investigate the impact of this combination in the field of Kemeny Rank Aggregation.
Our main results work both when considering the traditional setting of aggregation over linearly ordered votes, and in the more general setting where votes are partially ordered.
arXiv Detail & Related papers (2021-05-19T21:50:03Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
Reinforcement learning algorithms are typically limited to learning a single solution of a specified task.
We propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable.
arXiv Detail & Related papers (2021-03-12T04:54:31Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
We show that black-box optimization encodings can be automatically learned, rather than hand designed.
We show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites.
arXiv Detail & Related papers (2020-03-09T20:06:20Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.