論文の概要: Unifews: Unified Entry-Wise Sparsification for Efficient Graph Neural Network
- arxiv url: http://arxiv.org/abs/2403.13268v1
- Date: Wed, 20 Mar 2024 03:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:07:57.669627
- Title: Unifews: Unified Entry-Wise Sparsification for Efficient Graph Neural Network
- Title(参考訳): Unifews: 効率的なグラフニューラルネットワークのための統一入出力スカラー化
- Authors: Ningyi Liao, Zihao Yu, Siqiang Luo,
- Abstract要約: グラフニューラルネットワーク(GNN)は、様々なグラフ学習タスクにおいて有望な性能を示すが、リソース集約型計算のコストがかかる。
従来の研究では,グラフレベルやネットワークレベルのスペーシフィケーション技術を活用して,計算予算の削減を試みた。
個々の行列要素を考慮したエントリワイズ方式で2つの演算を統一するUnifewsを提案する。
- 参考スコア(独自算出の注目度): 10.556366638048384
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) have shown promising performance in various graph learning tasks, but at the cost of resource-intensive computations. The primary overhead of GNN update stems from graph propagation and weight transformation, both involving operations on graph-scale matrices. Previous studies attempt to reduce the computational budget by leveraging graph-level or network-level sparsification techniques, resulting in downsized graph or weights. In this work, we propose Unifews, which unifies the two operations in an entry-wise manner considering individual matrix elements, and conducts joint edge-weight sparsification to enhance learning efficiency. The entry-wise design of Unifews enables adaptive compression across GNN layers with progressively increased sparsity, and is applicable to a variety of architectural designs with on-the-fly operation simplification. Theoretically, we establish a novel framework to characterize sparsified GNN learning in view of a graph optimization process, and prove that Unifews effectively approximates the learning objective with bounded error and reduced computational load. We conduct extensive experiments to evaluate the performance of our method in diverse settings. Unifews is advantageous in jointly removing more than 90% of edges and weight entries with comparable or better accuracy than baseline models. The sparsification offers remarkable efficiency improvements including 10-20x matrix operation reduction and up to 100x acceleration in graph propagation time for the largest graph at the billion-edge scale.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフ学習タスクにおいて有望な性能を示すが、リソース集約型計算のコストがかかる。
GNN更新の主なオーバーヘッドは、グラフの伝搬と重み変換に起因している。
従来の研究では、グラフレベルやネットワークレベルのスペーシフィケーション技術を活用して計算予算を削減し、結果としてグラフや重みが小さくなった。
本研究では,個々の行列要素を考慮した2つの操作をエントリワイズに統一するUnifewsを提案する。
Unifewsのエントリワイド設計は、徐々に幅を拡大したGNN層間の適応圧縮を可能にし、オンザフライ操作を単純化した様々なアーキテクチャ設計に適用できる。
理論的には、グラフ最適化プロセスの観点から、スパーシフィケードGNN学習を特徴付ける新しい枠組みを確立し、Unifewsが学習目標を有界誤差で効果的に近似し、計算負荷を低減することを証明する。
多様な設定で提案手法の性能評価を行うため,広範囲な実験を行った。
Unifewsは、エッジとウェイトエントリの90%以上をベースラインモデルに匹敵する精度で、共同で取り除くのに有利である。
このスペーシフィケーションは、10-20倍の行列演算の削減や、数十億のエッジスケールで最大のグラフのグラフ伝播時間における最大100倍の加速を含む、顕著な効率改善を提供する。
関連論文リスト
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Graph Contrastive Learning with Implicit Augmentations [36.57536688367965]
Inlicit Graph Contrastive Learning (iGCL)は、グラフトポロジ構造を再構築することにより、変分グラフオートエンコーダから学習した潜時空間の増大を利用する。
グラフレベルとノードレベルの両方のタスクに対する実験結果から,提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-11-07T17:34:07Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
論文 参考訳(メタデータ) (2022-07-19T10:32:11Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。