論文の概要: SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization
- arxiv url: http://arxiv.org/abs/2207.09179v1
- Date: Tue, 19 Jul 2022 10:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:31:01.917675
- Title: SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization
- Title(参考訳): SCARA: 特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク
- Authors: Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, Pengcheng Yin
- Abstract要約: グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
- 参考スコア(独自算出の注目度): 23.609017952951454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in data processing have stimulated the demand for learning
graphs of very large scales. Graph Neural Networks (GNNs), being an emerging
and powerful approach in solving graph learning tasks, are known to be
difficult to scale up. Most scalable models apply node-based techniques in
simplifying the expensive graph message-passing propagation procedure of GNN.
However, we find such acceleration insufficient when applied to million- or
even billion-scale graphs. In this work, we propose SCARA, a scalable GNN with
feature-oriented optimization for graph computation. SCARA efficiently computes
graph embedding from node features, and further selects and reuses feature
computation results to reduce overhead. Theoretical analysis indicates that our
model achieves sub-linear time complexity with a guaranteed precision in
propagation process as well as GNN training and inference. We conduct extensive
experiments on various datasets to evaluate the efficacy and efficiency of
SCARA. Performance comparison with baselines shows that SCARA can reach up to
100x graph propagation acceleration than current state-of-the-art methods with
fast convergence and comparable accuracy. Most notably, it is efficient to
process precomputation on the largest available billion-scale GNN dataset
Papers100M (111M nodes, 1.6B edges) in 100 seconds.
- Abstract(参考訳): データ処理の最近の進歩は、非常に大規模な学習グラフの需要を刺激している。
グラフ学習タスクを解決するための新興かつ強力なアプローチであるグラフニューラルネットワーク(gnns)は、スケールアップが難しいことが知られている。
ほとんどのスケーラブルモデルは、GNNの高価なグラフメッセージパッシング伝搬手順を単純化するためにノードベースの手法を適用している。
しかし、百万グラフや数十億グラフに適用しても、そのような加速は不十分である。
本稿では,グラフ計算のための特徴指向最適化を備えたスケーラブルなGNNであるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、さらに特徴計算結果を選択して再利用することでオーバーヘッドを減らす。
理論解析は,gnnのトレーニングと推論に加えて,伝播過程の精度が保証された部分線形時間複雑性を実現することを示唆する。
SCARAの有効性と効率を評価するために,様々なデータセットに関する広範な実験を行った。
ベースラインと比較すると、scaraは高速収束と同等の精度で現在の最先端の方法よりも100倍のグラフ伝搬の加速に到達できる。
最も注目すべきは、最大10億のGNNデータセットであるPapers100M(111Mノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
関連論文リスト
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
粗い手法はグラフを小さくするために使われ、計算が高速化される。
これまでの調査では、推論中にコストに対処できなかった。
本稿では, サブグラフベース手法によるGNNのスケーラビリティ向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:27:24Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
新しい分散グラフ学習システムGraphThetaを紹介します。
複数のトレーニング戦略をサポートし、大規模グラフ上で効率的でスケーラブルな学習を可能にします。
この仕事は、文学における10億規模のネットワーク上で実施された最大のエッジアトリビュートGNN学習タスクを表します。
論文 参考訳(メタデータ) (2021-04-21T14:51:33Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
GNNにおける情報拡散の効率的な近似を利用したPPRGoモデルを提案する。
高速であることに加えて、PPRGoは本質的にスケーラブルであり、業界設定で見られるような大規模なデータセットに対して、自明に並列化することができる。
このグラフのすべてのノードに対するPPRGoのトレーニングとラベルの予測には1台のマシンで2分未満で、同じグラフ上の他のベースラインをはるかに上回ります。
論文 参考訳(メタデータ) (2020-07-03T09:30:07Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。