論文の概要: Class Relevance Learning For Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2401.01021v1
- Date: Thu, 21 Sep 2023 08:38:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 10:06:41.051986
- Title: Class Relevance Learning For Out-of-distribution Detection
- Title(参考訳): 分布外検出のためのクラス関連学習
- Authors: Butian Xiong, Liguang Zhou, Tin Lun Lam, Yangsheng Xu
- Abstract要約: 本稿では,OOD検出に適したクラス関連学習手法を提案する。
本手法は,OODパイプライン内のクラス間関係を戦略的に活用し,総合的なクラス関連学習フレームワークを確立する。
- 参考スコア(独自算出の注目度): 16.029229052068
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image classification plays a pivotal role across diverse applications, yet
challenges persist when models are deployed in real-world scenarios. Notably,
these models falter in detecting unfamiliar classes that were not incorporated
during classifier training, a formidable hurdle for safe and effective
real-world model deployment, commonly known as out-of-distribution (OOD)
detection. While existing techniques, like max logits, aim to leverage logits
for OOD identification, they often disregard the intricate interclass
relationships that underlie effective detection. This paper presents an
innovative class relevance learning method tailored for OOD detection. Our
method establishes a comprehensive class relevance learning framework,
strategically harnessing interclass relationships within the OOD pipeline. This
framework significantly augments OOD detection capabilities. Extensive
experimentation on diverse datasets, encompassing generic image classification
datasets (Near OOD and Far OOD datasets), demonstrates the superiority of our
method over state-of-the-art alternatives for OOD detection.
- Abstract(参考訳): 画像分類は、さまざまなアプリケーションで重要な役割を果たすが、モデルが現実世界のシナリオにデプロイされる場合、課題は持続する。
特に、これらのモデルは、分類器の訓練中に組み込まれていない不慣れなクラスを検出するのに失敗し、安全で効果的な実世界のモデル展開のハードルとなった。
最大ロジットのような既存のテクニックは、OOD識別にロジットを活用することを目指しているが、効果的な検出の基盤となる複雑なクラス間の関係を無視することが多い。
本稿では,OOD検出に適したクラス関連学習手法を提案する。
本手法は,OODパイプライン内のクラス間関係を戦略的に活用し,総合的なクラス関連学習フレームワークを確立する。
このフレームワークはOOD検出機能を著しく強化する。
汎用画像分類データセット(Near OODおよびFar OODデータセット)を含む多種多様なデータセットに対する大規模な実験は、OOD検出の最先端代替手段よりも、我々の手法が優れていることを示す。
関連論文リスト
- TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
論文 参考訳(メタデータ) (2024-08-28T06:37:59Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOODは、オブジェクト検出領域の概念を利用して、マルチラベル分類タスクでOOD検出を行う方法である。
提案手法を最先端のOOD検出手法と比較し,OODベンチマークデータセットの総合的なスイートにおいて,YolOODがこれらの手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-12-05T07:52:08Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - OODformer: Out-Of-Distribution Detection Transformer [15.17006322500865]
現実世界の安全クリティカルなアプリケーションでは、新しいデータポイントがOODであるかどうかを認識することが重要です。
本稿では,OODformer というファースト・オブ・ザ・キンドな OOD 検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-07-19T15:46:38Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。