Class Relevance Learning For Out-of-distribution Detection
- URL: http://arxiv.org/abs/2401.01021v1
- Date: Thu, 21 Sep 2023 08:38:21 GMT
- Title: Class Relevance Learning For Out-of-distribution Detection
- Authors: Butian Xiong, Liguang Zhou, Tin Lun Lam, Yangsheng Xu
- Abstract summary: This paper presents an innovative class relevance learning method tailored for OOD detection.
Our method establishes a comprehensive class relevance learning framework, strategically harnessing interclass relationships within the OOD pipeline.
- Score: 16.029229052068
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image classification plays a pivotal role across diverse applications, yet
challenges persist when models are deployed in real-world scenarios. Notably,
these models falter in detecting unfamiliar classes that were not incorporated
during classifier training, a formidable hurdle for safe and effective
real-world model deployment, commonly known as out-of-distribution (OOD)
detection. While existing techniques, like max logits, aim to leverage logits
for OOD identification, they often disregard the intricate interclass
relationships that underlie effective detection. This paper presents an
innovative class relevance learning method tailored for OOD detection. Our
method establishes a comprehensive class relevance learning framework,
strategically harnessing interclass relationships within the OOD pipeline. This
framework significantly augments OOD detection capabilities. Extensive
experimentation on diverse datasets, encompassing generic image classification
datasets (Near OOD and Far OOD datasets), demonstrates the superiority of our
method over state-of-the-art alternatives for OOD detection.
Related papers
- TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
We propose textbfTagOOD, a novel approach for OOD detection using vision-language representations.
TagOOD trains a lightweight network on the extracted object features to learn representative class centers.
These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection.
arXiv Detail & Related papers (2024-08-28T06:37:59Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models.
In this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model.
Experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
arXiv Detail & Related papers (2024-03-20T06:04:05Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOOD is a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task.
We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
arXiv Detail & Related papers (2022-12-05T07:52:08Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - OODformer: Out-Of-Distribution Detection Transformer [15.17006322500865]
In real-world safety-critical applications, it is important to be aware if a new data point is OOD.
This paper proposes a first-of-its-kind OOD detection architecture named OODformer.
arXiv Detail & Related papers (2021-07-19T15:46:38Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.