論文の概要: LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
- arxiv url: http://arxiv.org/abs/2403.13372v4
- Date: Thu, 27 Jun 2024 22:44:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 21:25:00.717327
- Title: LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
- Title(参考訳): LlamaFactory: 100以上の言語モデルの統一されたファインチューニング
- Authors: Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, Yongqiang Ma,
- Abstract要約: LlamaFactoryは、最先端の効率的なトレーニング方法を統合した統合フレームワークである。
組み込みのWeb UI LlamaBoardをコーディングすることなく、100以上のLLMの微調整を柔軟にカスタマイズできるソリューションを提供する。
- 参考スコア(独自算出の注目度): 21.06053238303921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It provides a solution for flexibly customizing the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and received over 25,000 stars and 3,000 forks.
- Abstract(参考訳): 下流タスクに大規模言語モデル(LLM)を適用するためには、効率的な微調整が不可欠である。
しかし、異なるモデルでこれらのメソッドを実装するには、自明な努力が必要である。
LlamaFactoryは、最先端の効率的なトレーニング方法を統合した統合フレームワークである。
組み込みのWeb UI LlamaBoardをコーディングすることなく、100以上のLLMの微調整を柔軟にカスタマイズできるソリューションを提供する。
言語モデリングとテキスト生成タスクにおけるフレームワークの有効性と有効性を実証的に検証する。
https://github.com/hiyouga/LLaMA-Factoryで公開され、25,000以上の星と3000のフォークを受け取った。
関連論文リスト
- Super Tiny Language Models [3.8353434814956517]
本稿では,スーパーティニー言語モデル(STLM)に着目した一連の研究成果を紹介する。
我々は,プーリング機構によるバイトレベルのトークン化,ウェイトタイリング,効率的なトレーニング戦略など,革新的な手法を探求する。
我々の最終的な目標は、広範囲のアプリケーションに対して、高性能な言語モデルをよりアクセスしやすく、実用的なものにすることです。
論文 参考訳(メタデータ) (2024-05-23T04:12:49Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Beyond English-Centric Bitexts for Better Multilingual Language
Representation Learning [99.42850643947439]
我々は、新しいサンプリング戦略と組み合わさって、英語中心のbitextsを超えることによって、モデルサイズにおけるパフォーマンスが大幅に向上することを示す。
XY-LENT XL は XLM-RXXL より優れ,mT5 XXL との競合性能は5倍,6倍小さい。
論文 参考訳(メタデータ) (2022-10-26T17:16:52Z) - SMaLL-100: Introducing Shallow Multilingual Machine Translation Model
for Low-Resource Languages [102.50127671423752]
本稿では,100言語をカバーするM2M-100(12B)機械翻訳モデルの蒸留版であるSMaLL-100を紹介する。
我々はSMALL-100を全ての言語対を均一にサンプリングすることで訓練し、低リソース言語の性能を維持することに重点を置いている。
我々のモデルはM2M-100(1.2B)に匹敵する結果を得るが、推論では3.6倍小さく、4.3倍高速である。
論文 参考訳(メタデータ) (2022-10-20T22:32:29Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
ゼロショット学習は、与えられたタスクでモデルをトレーニングすることを目的としており、追加のトレーニングなしで新しい学習タスクに対処できる。
提案手法は、ゼロショット学習を複数選択タスクに変換し、FLANなどの大規模生成モデルで一般的に使用される問題を回避する。
提案手法は,いくつかのベンチマークにおいて最先端の性能を示し,自然言語推論やテキスト分類といったタスクに対して良好な結果をもたらす。
論文 参考訳(メタデータ) (2022-10-16T17:24:06Z) - PERFECT: Prompt-free and Efficient Few-shot Learning with Language
Models [67.3725459417758]
PERFECTは、手工芸に頼らずに数発のPLMを微調整するためのシンプルで効率的な方法である。
そこで本研究では,手作業によるタスクプロンプトを,サンプル効率の良い微調整が可能なタスク固有アダプタに置き換えることができることを示す。
幅広い数発のNLPタスクの実験では、PERFECTはシンプルで効率的でありながら、既存の最先端の数発の学習方法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-04-03T22:31:25Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。