Robust image segmentation model based on binary level set
- URL: http://arxiv.org/abs/2403.13392v2
- Date: Mon, 15 Apr 2024 06:46:04 GMT
- Title: Robust image segmentation model based on binary level set
- Authors: Wenqi Zhao,
- Abstract summary: This paper models the illumination term in intensity inhomogeneity images.
To enhance the model's robustness to noisy images, we incorporate the binary level set model into the proposed model.
By introducing the variational operator GL, our model demonstrates better capability in segmenting noisy images.
- Score: 3.6985338895569204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to improve the robustness of traditional image segmentation models to noise, this paper models the illumination term in intensity inhomogeneity images. Additionally, to enhance the model's robustness to noisy images, we incorporate the binary level set model into the proposed model. Compared to the traditional level set, the binary level set eliminates the need for continuous reinitialization. Moreover, by introducing the variational operator GL, our model demonstrates better capability in segmenting noisy images. Finally, we employ the three-step splitting operator method for solving, and the effectiveness of the proposed model is demonstrated on various images.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - ERD: Exponential Retinex decomposition based on weak space and hybrid nonconvex regularization and its denoising application [3.9304843171575112]
The Retinex theory models the image as a segmentation of illumination and noise components.
We propose an exponential decomposition algorithm for image denoising.
arXiv Detail & Related papers (2024-07-11T13:34:37Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - DiffHarmony: Latent Diffusion Model Meets Image Harmonization [11.500358677234939]
Diffusion models have promoted the rapid development of image-to-image translation tasks.
Fine-tuning pre-trained latent diffusion models from scratch is computationally intensive.
In this paper, we adapt a pre-trained latent diffusion model to the image harmonization task to generate harmonious but potentially blurry initial images.
arXiv Detail & Related papers (2024-04-09T09:05:23Z) - A locally statistical active contour model for SAR image segmentation
can be solved by denoising algorithms [6.965119490863576]
Experimental results for real SAR images show that the proposed image segmentation model can efficiently stop the contours at weak or blurred edges.
The proposed FPRD1/FPRD2 models are about 1/2 (or less than) of the time required for the SBRD model based on the Split Bregman technique.
arXiv Detail & Related papers (2024-01-10T00:27:14Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Diffusion Action Segmentation [63.061058214427085]
We propose a novel framework via denoising diffusion models, which shares the same inherent spirit of such iterative refinement.
In this framework, action predictions are iteratively generated from random noise with input video features as conditions.
arXiv Detail & Related papers (2023-03-31T10:53:24Z) - Saliency-Driven Active Contour Model for Image Segmentation [2.8348950186890467]
We propose a novel model that uses the advantages of a saliency map with local image information (LIF) and overcomes the drawbacks of previous models.
The proposed model is driven by a saliency map of an image and the local image information to enhance the progress of the active contour models.
arXiv Detail & Related papers (2022-05-23T06:02:52Z) - Learning Integrodifferential Models for Image Denoising [14.404339094377319]
We introduce an integrodifferential extension of the edge-enhancing anisotropic diffusion model for image denoising.
By accumulating weighted structural information on multiple scales, our model is the first to create anisotropy through multiscale integration.
arXiv Detail & Related papers (2020-10-21T10:50:29Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.