Measurement-only dynamical phase transition of topological and boundary order in toric code and gauge-Higgs models
- URL: http://arxiv.org/abs/2403.13435v2
- Date: Sun, 2 Jun 2024 06:55:55 GMT
- Title: Measurement-only dynamical phase transition of topological and boundary order in toric code and gauge-Higgs models
- Authors: Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose,
- Abstract summary: We study long-time dynamics and fate of topologically-ordered state in toric code model evolving through projective measurement-only circuit.
The circuit is composed of several measurement operators corresponding to each term of toric code Hamiltonian with magnetic-field perturbations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extensively study long-time dynamics and fate of topologically-ordered state in toric code model evolving through projective measurement-only circuit. The circuit is composed of several measurement operators corresponding to each term of toric code Hamiltonian with magnetic-field perturbations, which is a gauge-fixed version of a (2+1)-dimensional gauge-Higgs model. We employ a cylinder geometry with distinct upper and lower boundaries to classify stationary states after long-time measurement dynamics. The appearing stationary states depend on measurement probabilities for each measurement operator. The Higgs, confined and deconfined phases emerge in the time evolution by the circuit. We find that both Higgs and confined phases are separated from the deconfined phase by topological entanglement entropy. We numerically clarify that both Higgs and confined phases are characterized by a long-range order on the boundaries accompanying edge modes, and they shift with each other by a crossover reflecting properties in the bulk phase diagram.
Related papers
- Bulk and boundary entanglement transitions in the projective gauge-Higgs
model [0.0]
In quantum many-body spin systems, the interplay between the entangling effect of multi-qubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects.
We numerically investigate a measurement-based model associated with the $(2+1)$d $mathbbZ$ Fradkin-Shenker Hamiltonian model.
arXiv Detail & Related papers (2024-02-18T23:44:51Z) - Bulk-Measurement-Induced Boundary Phase Transition in Toric Code and
Gauge-Higgs Model [0.0]
Boundary phase transition in toric code under cylinder geometry via bulk projective measurement is reported.
As the frequency of local measurement for bulk qubits is increased, spin-glass type long-range order on the boundaries emerges indicating spontaneous-symmetry breaking ( SSB)
We numerically elucidate the properties of this phase transition in detail, especially its criticality, and give a physical picture using non-local gauge-invariant symmetry operators.
arXiv Detail & Related papers (2023-11-28T10:04:17Z) - Interplay between lattice gauge theory and subsystem codes [0.0]
In this work, we extend the interplay between quantum information system and gauge-theory model from the view point of subsystem code.
We show that $Z$ lattice-Higgs model in (2+1)-dimensions with specific open boundary conditions is noting but a kind of subsystem code.
Mixed anomaly of them dictates the existence of boundary zero modes, which is a direct consequence of symmetry-protected topological order in Higgs and confinement phases.
arXiv Detail & Related papers (2023-04-12T09:20:44Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Topology, criticality, and dynamically generated qubits in a stochastic
measurement-only Kitaev model [0.059083469750614785]
We consider a paradigmatic solvable model of topological order in two dimensions, Kitaev's honeycomb Hamiltonian.
We turn it into a measurement-only dynamics consisting of measurements of two-qubit bond operators.
We observe an unusual behavior for the dynamical purification of mixed states, characterized at late times by the dynamical exponent $z = 1/2$.
arXiv Detail & Related papers (2022-07-14T17:46:04Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Measurement-Induced Entanglement Phase Transition in Random Bilocal
Circuits [0.0]
We study the dynamics of averaged purity for a simple $N$-qudit Brownian circuit model with all-to-all random interaction and measurements.
We show that there are two phases distinguished by the behavior of the total system entropy in the long time.
arXiv Detail & Related papers (2022-01-30T02:07:46Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.