Progressive trajectory matching for medical dataset distillation
- URL: http://arxiv.org/abs/2403.13469v1
- Date: Wed, 20 Mar 2024 10:18:20 GMT
- Title: Progressive trajectory matching for medical dataset distillation
- Authors: Zhen Yu, Yang Liu, Qingchao Chen,
- Abstract summary: It is essential but challenging to share medical image datasets due to privacy issues.
We propose a novel dataset distillation method to condense the original medical image datasets into a synthetic one.
- Score: 15.116863763717623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is essential but challenging to share medical image datasets due to privacy issues, which prohibit building foundation models and knowledge transfer. In this paper, we propose a novel dataset distillation method to condense the original medical image datasets into a synthetic one that preserves useful information for building an analysis model without accessing the original datasets. Existing methods tackle only natural images by randomly matching parts of the training trajectories of the model parameters trained by the whole real datasets. However, through extensive experiments on medical image datasets, the training process is extremely unstable and achieves inferior distillation results. To solve these barriers, we propose to design a novel progressive trajectory matching strategy to improve the training stability for medical image dataset distillation. Additionally, it is observed that improved stability prevents the synthetic dataset diversity and final performance improvements. Therefore, we propose a dynamic overlap mitigation module that improves the synthetic dataset diversity by dynamically eliminating the overlap across different images and retraining parts of the synthetic images for better convergence. Finally, we propose a new medical image dataset distillation benchmark of various modalities and configurations to promote fair evaluations. It is validated that our proposed method achieves 8.33% improvement over previous state-of-the-art methods on average, and 11.7% improvement when ipc=2 (i.e., image per class is 2). Codes and benchmarks will be released.
Related papers
- Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - Dataset Distillation in Medical Imaging: A Feasibility Study [16.44272552893816]
Data sharing in the medical image analysis field has potential yet remains underappreciated.
One possible solution is to avoid transferring the entire dataset while still achieving similar model performance.
Recent progress in data distillation within computer science offers promising prospects for sharing medical data efficiently.
arXiv Detail & Related papers (2024-07-19T15:59:04Z) - FairDiff: Fair Segmentation with Point-Image Diffusion [15.490776421216689]
Our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images.
We formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk and fairness.
Our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models.
arXiv Detail & Related papers (2024-07-08T17:59:58Z) - Image Distillation for Safe Data Sharing in Histopathology [10.398266052019675]
Histopathology can help clinicians make accurate diagnoses, determine disease prognosis, and plan appropriate treatment strategies.
As deep learning techniques prove successful in the medical domain, the primary challenges become limited data availability and concerns about data sharing and privacy.
We create a small synthetic dataset that encapsulates essential information, which can be shared without constraints.
We train a latent diffusion model and construct a new distilled synthetic dataset with a small number of human readable synthetic images.
arXiv Detail & Related papers (2024-06-19T13:19:08Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.