FairDiff: Fair Segmentation with Point-Image Diffusion
- URL: http://arxiv.org/abs/2407.06250v1
- Date: Mon, 8 Jul 2024 17:59:58 GMT
- Title: FairDiff: Fair Segmentation with Point-Image Diffusion
- Authors: Wenyi Li, Haoran Xu, Guiyu Zhang, Huan-ang Gao, Mingju Gao, Mengyu Wang, Hao Zhao,
- Abstract summary: Our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images.
We formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk and fairness.
Our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models.
- Score: 15.490776421216689
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fairness is an important topic for medical image analysis, driven by the challenge of unbalanced training data among diverse target groups and the societal demand for equitable medical quality. In response to this issue, our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images. However, in terms of generating synthetic images, previous works either lack paired labels or fail to precisely control the boundaries of synthetic images to be aligned with those labels. To address this, we formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk minimization and fairness maximization. On the implementation side, our solution features an innovative Point-Image Diffusion architecture, which leverages 3D point clouds for improved control over mask boundaries through a point-mask-image synthesis pipeline. This method outperforms significantly existing techniques in synthesizing scanning laser ophthalmoscopy (SLO) fundus images. By combining synthetic data with real data during the training phase using a proposed Equal Scale approach, our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models. Code is available at https://github.com/wenyi-li/FairDiff.
Related papers
- Enhancing Consistency-Based Image Generation via Adversarialy-Trained Classification and Energy-Based Discrimination [13.238373528922194]
We propose a novel technique for post-processing Consistency-based generated images, enhancing their perceptual quality.
Our approach utilizes a joint classifier-discriminator model, in which both portions are trained adversarially.
By employing example-specific projected gradient under the guidance of this joint machine, we refine synthesized images and achieve an improved FID scores on the ImageNet 64x64 dataset.
arXiv Detail & Related papers (2024-05-25T14:53:52Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging.
This work presents a loss function that leverages the intrinsic multi-scale nature of the Gray-Level-Co-occurrence Matrix (GLCM)
Our approach also introduces a self-attention layer that dynamically aggregates the multi-scale texture information extracted from the images.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - Robustness-Guided Image Synthesis for Data-Free Quantization [15.91924736452861]
We propose Robustness-Guided Image Synthesis (RIS) to enrich the semantics of synthetic images and improve image diversity.
RIS is a simple but effective method to enrich the semantics of synthetic images and improve image diversity.
We achieve state-of-the-art performance for various settings on data-free quantization and can be extended to other data-free compression tasks.
arXiv Detail & Related papers (2023-10-05T16:39:14Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - You Only Need Adversarial Supervision for Semantic Image Synthesis [84.83711654797342]
We propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results.
We show that images synthesized by our model are more diverse and follow the color and texture of real images more closely.
arXiv Detail & Related papers (2020-12-08T23:00:48Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.