First Demonstration of 25λ x 10 Gb/s C+L Band Classical / DV-QKD Co-Existence Over Single Bidirectional Fiber Link
- URL: http://arxiv.org/abs/2403.13503v1
- Date: Wed, 20 Mar 2024 11:00:03 GMT
- Title: First Demonstration of 25λ x 10 Gb/s C+L Band Classical / DV-QKD Co-Existence Over Single Bidirectional Fiber Link
- Authors: Florian Honz, Florian Prawits, Obada Alia, Hesham Sakr, Thomas Bradley, Cong Zhang, Radan Slavík, Francesco Poletti, George Kanellos, Reza Nejabati, Philip Walther, Dimitra Simeonidou, Hannes Hübel, Bernhard Schrenk,
- Abstract summary: Co-propagation of classical and quantum signals can benefit from the development of novel hollow-core fibers.
We demonstrate a secure key rate of 330 bit/s for a quantum channel at 1538 nm in the presence of 25 x 10 Gb/s classical channels.
We believe this to be an important step towards the deployment and integration of hollow-core fibers together with DV-QKD for the inherently secure telecom network of the future.
- Score: 2.1326417062961687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum key distribution has reached the maturity level for practical deployment, questions about the co-integration with existing classical communication systems are of utmost importance. To this end we demonstrate how the co-propagation of classical and quantum signals can benefit from the development of novel hollow-core fibers. We demonstrate a secure key rate of 330 bit/s for a quantum channel at 1538 nm in the presence of 25 x 10 Gb/s classical channels, transmitted at an aggregated launch power of 12 dBm, spanning over the C+L-band in the same hollow-core fiber link. Furthermore, we show the co-integration of the classical key-distillation channel onto this fiber link, turning it into a bidirectional fiber link and thereby mitigating the need for multiple fibers. We believe this to be an important step towards the deployment and integration of hollow-core fibers together with DV-QKD for the inherently secure telecom network of the future.
Related papers
- Quantum teleportation coexisting with classical communications in optical fiber [2.7599674971366843]
We report the first demonstration of quantum teleportation over fibers carrying conventional telecommunications traffic.
To protect quantum fidelity from spontaneous Raman scattering noise, we use optimal O-band quantum channels, narrow spectro-temporal filtering, and multi-photon coincidence detection.
Results show the feasibility of advanced quantum and classical network applications operating within a unified fiber infrastructure.
arXiv Detail & Related papers (2024-04-16T17:11:44Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Time-Interleaving Enabled Co-propagation of QKD and Classical Channels
over 100-km Fiber with 10-dBm Classical Launch Power [2.6857548685427357]
We develop a time-interleaving technique to enable the co-propagation of quantum and classical channels in the C-band without sacrificing either performance.
We demonstrate the co-propagation of a polarization-encoding decoy-state BB84 QKD channel with a 100 Gb/s QPSK channel with 10-dBm launch power in the C-band over 100 km of fiber.
arXiv Detail & Related papers (2023-04-26T21:10:12Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Differential Phase-Shift QKD in a 2:16-Split Lit PON with 19
Carrier-Grade Channels [2.026424957803652]
We investigate the practical network integration of differential phase shift quantum key distribution.
We prove that the quantum channel can co-exist with up to 19 classical channels of a fully-loaded modern access standard.
The high power difference of 93.8 dB between launched classical and quantum signals in the lit access network leads to a low penalty of 0.52 percent in terms of error ratio.
arXiv Detail & Related papers (2022-03-16T16:17:38Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The limits of multiplexing quantum and classical channels: Case study of
a 2.5 GHz discrete variable quantum key distribution system [0.0]
We study the performance of a system running a simplified BB84 protocol at 2.5 GHz repetition rate.
We discuss the performance of an ideal system under the same conditions.
In this scenario we could exchange a secret key with a launch power up to 16.7 dBm in the classical channels.
arXiv Detail & Related papers (2021-09-06T12:52:58Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Long-distance transmission of quantum key distribution coexisting with
classical optical communication over weakly-coupled few-mode fiber [13.259161549224265]
Quantum key distribution (QKD) is one of the most practical applications in quantum information processing.
We present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF.
Co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation.
arXiv Detail & Related papers (2020-02-02T15:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.