No more optimization rules: LLM-enabled policy-based multi-modal query optimizer
- URL: http://arxiv.org/abs/2403.13597v2
- Date: Sat, 23 Mar 2024 17:05:15 GMT
- Title: No more optimization rules: LLM-enabled policy-based multi-modal query optimizer
- Authors: Yifan Wang, Haodi Ma, Daisy Zhe Wang,
- Abstract summary: Large language model (LLM) has marked a pivotal moment in the field of machine learning and deep learning.
In this paper, we investigate the query optimization ability of LLM and use LLM to design LaPuda, a novel LLM and Policy based multi-modal query.
- Score: 9.370719876854228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) has marked a pivotal moment in the field of machine learning and deep learning. Recently its capability for query planning has been investigated, including both single-modal and multi-modal queries. However, there is no work on the query optimization capability of LLM. As a critical (or could even be the most important) step that significantly impacts the execution performance of the query plan, such analysis and attempts should not be missed. From another aspect, existing query optimizers are usually rule-based or rule-based + cost-based, i.e., they are dependent on manually created rules to complete the query plan rewrite/transformation. Given the fact that modern optimizers include hundreds to thousands of rules, designing a multi-modal query optimizer following a similar way is significantly time-consuming since we will have to enumerate as many multi-modal optimization rules as possible, which has not been well addressed today. In this paper, we investigate the query optimization ability of LLM and use LLM to design LaPuda, a novel LLM and Policy based multi-modal query optimizer. Instead of enumerating specific and detailed rules, LaPuda only needs a few abstract policies to guide LLM in the optimization, by which much time and human effort are saved. Furthermore, to prevent LLM from making mistakes or negative optimization, we borrow the idea of gradient descent and propose a guided cost descent (GCD) algorithm to perform the optimization, such that the optimization can be kept in the correct direction. In our evaluation, our methods consistently outperform the baselines in most cases. For example, the optimized plans generated by our methods result in 1~3x higher execution speed than those by the baselines.
Related papers
- The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
We show that embeddings of query text contain useful semantic information for query optimization.
We show that a simple binary deciding between alternative query plans, trained on a small number of embedded query vectors, can outperform existing systems.
arXiv Detail & Related papers (2024-11-05T07:10:00Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
Large language models (LLMs) have shown great progress in responding to user questions.
The quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly.
We propose a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query.
arXiv Detail & Related papers (2024-05-30T17:05:45Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling [20.0605311279483]
We introduce PRompt Optimization in Multi-Step Tasks (PROMST)
It incorporates human-designed feedback rules to automatically offer direct suggestions for improvement.
It significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks.
arXiv Detail & Related papers (2024-02-13T16:38:01Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Lero: A Learning-to-Rank Query Optimizer [49.841082217997354]
We introduce a learning to rank query, called Lero, which builds on top of the native query and continuously learns to improve query optimization.
Rather than building a learned from scratch, Lero is designed to leverage decades of wisdom of databases and improve the native.
Lero achieves near optimal performance on several benchmarks.
arXiv Detail & Related papers (2023-02-14T07:31:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.