論文の概要: Threats, Attacks, and Defenses in Machine Unlearning: A Survey
- arxiv url: http://arxiv.org/abs/2403.13682v1
- Date: Wed, 20 Mar 2024 15:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:28:26.772170
- Title: Threats, Attacks, and Defenses in Machine Unlearning: A Survey
- Title(参考訳): 機械学習における脅威、攻撃、防御 - 調査より
- Authors: Ziyao Liu, Huanyi Ye, Chen Chen, Kwok-Yan Lam,
- Abstract要約: マシン・アンラーニング(MU)はAIの安全性を向上させる可能性に対して大きな注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めようとしている。
- 参考スコア(独自算出の注目度): 15.05662521329346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Machine Unlearning (MU) has gained considerable attention for its potential to improve AI safety by removing the influence of specific data from trained Machine Learning (ML) models. This process, known as knowledge removal, addresses concerns about data such as sensitivity, copyright restrictions, obsolescence, or low quality. This capability is also crucial for ensuring compliance with privacy regulations such as the Right To Be Forgotten (RTBF). Therefore, strategic knowledge removal mitigates the risk of harmful outcomes, safeguarding against biases, misinformation, and unauthorized data exploitation, thereby enhancing the ethical use and reliability of AI systems. Efforts have been made to design efficient unlearning approaches, with MU services being examined for integration with existing machine learning as a service (MLaaS), allowing users to submit requests to erase data. However, recent research highlights vulnerabilities in machine unlearning systems, such as information leakage and malicious unlearning requests, that can lead to significant security and privacy concerns. Moreover, extensive research indicates that unlearning methods and prevalent attacks fulfill diverse roles within MU systems. For instance, unlearning can act as a mechanism to recover models from backdoor attacks, while backdoor attacks themselves can serve as an evaluation metric for unlearning effectiveness. This underscores the intricate relationship and complex interplay between these elements in maintaining system functionality and safety. Therefore, this survey seeks to bridge the gap between the extensive number of studies on threats, attacks, and defenses in machine unlearning and the absence of a comprehensive review that categorizes their taxonomy, methods, and solutions, thus offering valuable insights for future research directions and practical implementations.
- Abstract(参考訳): 最近、機械学習(MU)は、訓練された機械学習(ML)モデルから特定のデータの影響を取り除き、AIの安全性を向上させる可能性に大きな注目を集めている。
このプロセスは知識除去と呼ばれ、感度、著作権制限、陳腐化、低品質といったデータに関する懸念に対処する。
この機能は、RTBF(Right To Be Forgotten)のようなプライバシー規制の遵守を保証する上でも重要である。
したがって、戦略的知識の除去は有害な結果のリスクを軽減し、バイアス、誤情報、不正なデータ搾取から保護し、AIシステムの倫理的利用と信頼性を高める。
MUサービスは既存の機械学習・アズ・ア・サービス(MLaaS)との統合のために検討されており、ユーザーはリクエストを提出してデータを消去することができる。
しかし、最近の研究では、情報漏洩や悪意のある未学習要求などの機械学習システムの脆弱性が強調されており、セキュリティとプライバシの重大な懸念に繋がる可能性がある。
さらに,未学習の手法や攻撃がMUシステムにおける多様な役割を担っていることを示す。
例えば、アンラーニングはバックドアアタックからモデルを復元するメカニズムとして機能し、バックドアアタック自体がアンラーニングの有効性を評価する指標として機能する。
このことは、システム機能と安全性を維持する上で、これらの要素間の複雑な関係と複雑な相互作用を浮き彫りにする。
そこで本調査は,機械学習における脅威,攻撃,防衛に関する広範な研究と,その分類,方法,ソリューションを分類する総合的なレビューの欠如とのギャップを埋めることを目的としており,今後の研究の方向性や実践実践に有用な洞察を提供する。
関連論文リスト
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce [0.0]
本稿では、金融・電子商取引アプリケーションに焦点をあて、機械学習におけるセキュリティとデータアタックの状況について調査する。
これらのリスクを軽減するため、差分プライバシー、堅牢な暗号保証、ZKP(Zero-Knowledge Proofs)など、さまざまな防衛戦略が検討されている。
この調査は、セキュアマシンアンラーニングにおける継続的な研究とイノベーションの必要性と、進化する攻撃ベクトルに対する強力な防御を開発することの重要性を強調している。
論文 参考訳(メタデータ) (2024-09-29T00:30:36Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Machine Unlearning: Solutions and Challenges [21.141664917477257]
機械学習モデルは、機密性、不正、悪意のあるデータを不注意に記憶し、プライバシ侵害、セキュリティ脆弱性、パフォーマンス劣化のリスクを生じさせる可能性がある。
これらの問題に対処するために、機械学習は訓練されたモデルに対する特定の訓練データポイントの影響を選択的に除去する重要なテクニックとして登場した。
本稿では,機械学習における解の包括的分類と解析について述べる。
論文 参考訳(メタデータ) (2023-08-14T10:45:51Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Support Vector Machines under Adversarial Label Contamination [13.299257835329868]
本稿では,SVM(Support Vector Machines)のセキュリティ評価を行った。
特に,複数のラベルを反転させることで,SVMの分類エラーを形式化することを目的とした攻撃者について検討する。
我々は、よりセキュアなSVM学習アルゴリズムを開発する上で、我々のアプローチは有用な洞察を与えることができると論じる。
論文 参考訳(メタデータ) (2022-06-01T09:38:07Z) - Security for Machine Learning-based Software Systems: a survey of
threats, practices and challenges [0.76146285961466]
機械学習ベースのモダンソフトウェアシステム(MLBSS)を安全に開発する方法は、依然として大きな課題である。
潜伏中の脆弱性と、外部のユーザーや攻撃者に暴露されるプライバシー問題は、ほとんど無視され、特定が難しい。
機械学習ベースのソフトウェアシステムのセキュリティは、固有のシステム欠陥や外敵攻撃から生じる可能性があると考えている。
論文 参考訳(メタデータ) (2022-01-12T23:20:25Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。