Loss Regularizing Robotic Terrain Classification
- URL: http://arxiv.org/abs/2403.13695v1
- Date: Wed, 20 Mar 2024 15:57:44 GMT
- Title: Loss Regularizing Robotic Terrain Classification
- Authors: Shakti Deo Kumar, Sudhanshu Tripathi, Krishna Ujjwal, Sarvada Sakshi Jha, Suddhasil De,
- Abstract summary: This paper proposes a new semi-supervised method for terrain classification of legged robots.
The proposed method has a stacked Long Short-Term Memory architecture, including a new loss regularization.
- Score: 1.5728609542259502
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Locomotion mechanics of legged robots are suitable when pacing through difficult terrains. Recognising terrains for such robots are important to fully yoke the versatility of their movements. Consequently, robotic terrain classification becomes significant to classify terrains in real time with high accuracy. The conventional classifiers suffer from overfitting problem, low accuracy problem, high variance problem, and not suitable for live dataset. On the other hand, classifying a growing dataset is difficult for convolution based terrain classification. Supervised recurrent models are also not practical for this classification. Further, the existing recurrent architectures are still evolving to improve accuracy of terrain classification based on live variable-length sensory data collected from legged robots. This paper proposes a new semi-supervised method for terrain classification of legged robots, avoiding preprocessing of long variable-length dataset. The proposed method has a stacked Long Short-Term Memory architecture, including a new loss regularization. The proposed method solves the existing problems and improves accuracy. Comparison with the existing architectures show the improvements.
Related papers
- Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - Towards Precise Model-free Robotic Grasping with Sim-to-Real Transfer
Learning [11.470950882435927]
We present an end-to-end robotic grasping network with a grasp.
In physical robotic experiments, our grasping framework grasped single known objects and novel complex-shaped household objects with a success rate of 90.91%.
The proposed grasping framework outperformed two state-of-the-art methods in both known and unknown object robotic grasping.
arXiv Detail & Related papers (2023-01-28T16:57:19Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
Domain classification is the fundamental task in natural language understanding (NLU)
Most existing continual learning approaches suffer from low accuracy and performance fluctuation.
We propose a hyper parameter-free continual learning model for text data that can stably produce high performance under various environments.
arXiv Detail & Related papers (2022-01-05T02:46:16Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Risk Bounds for Over-parameterized Maximum Margin Classification on
Sub-Gaussian Mixtures [100.55816326422773]
We study the phenomenon of the maximum margin classifier for linear classification problems.
Our results precisely characterize the condition under which benign overfitting can occur.
arXiv Detail & Related papers (2021-04-28T08:25:16Z) - An Efficient Method for the Classification of Croplands in Scarce-Label
Regions [0.0]
Two of the main challenges for cropland classification by satellite time-series images are insufficient ground-truth data and inaccessibility of high-quality hyperspectral images for under-developed areas.
Unlabeled medium-resolution satellite images are abundant, but how to benefit from them is an open question.
We will show how to leverage their potential for cropland classification using self-supervised tasks.
arXiv Detail & Related papers (2021-03-17T12:10:11Z) - Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain
Detection [60.88952532574564]
This paper conducts a thorough comparison of out-of-domain intent detection methods.
We evaluate multiple contextual encoders and methods, proven to be efficient, on three standard datasets for intent classification.
Our main findings show that fine-tuning Transformer-based encoders on in-domain data leads to superior results.
arXiv Detail & Related papers (2021-01-11T09:10:58Z) - Semi-supervised Gated Recurrent Neural Networks for Robotic Terrain
Classification [4.703075836560585]
We show how highly capable machine learning techniques, namely gated recurrent neural networks, allow our target legged robot to correctly classify the terrain it traverses.
We show how raw unlabelled data is used to improve significantly the classification results in a semi-supervised model.
arXiv Detail & Related papers (2020-11-24T06:25:19Z) - A Cycle GAN Approach for Heterogeneous Domain Adaptation in Land Use
Classification [0.0]
We present a novel method to deal with such cases, based on a modified cycleGAN version that incorporates classification losses and a metric space alignment term.
We demonstrate its power on a land use classification tasks, with images from both Google Earth and Sentinel-2.
arXiv Detail & Related papers (2020-04-22T08:16:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.