論文の概要: A Clustering Method with Graph Maximum Decoding Information
- arxiv url: http://arxiv.org/abs/2403.13846v1
- Date: Mon, 18 Mar 2024 05:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.689555
- Title: A Clustering Method with Graph Maximum Decoding Information
- Title(参考訳): グラフ最大復号情報を用いたクラスタリング手法
- Authors: Xinrun Xu, Manying Lv, Yurong Wu, Zhanbiao Lian, Zhiming Ding, Jin Yan, Shan Jiang,
- Abstract要約: 本稿では,CMDIと呼ばれるグラフベースモデルにおけるデコード情報の最大化のための新しいクラスタリング手法を提案する。
CMDIは2次元構造情報理論を、グラフ構造抽出とグラフ分割という2つのフェーズからなるクラスタリングプロセスに組み込んでいる。
3つの実世界のデータセットに対する実証的な評価は、CMDIが古典的ベースライン法より優れており、より優れた復号化情報比(DI-R)を示すことを示している。
これらの結果から,デコード情報の品質と計算効率を向上させるCMDIの有効性が示され,グラフベースのクラスタリング解析において有用なツールとして位置づけられた。
- 参考スコア(独自算出の注目度): 6.11503045313947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The clustering method based on graph models has garnered increased attention for its widespread applicability across various knowledge domains. Its adaptability to integrate seamlessly with other relevant applications endows the graph model-based clustering analysis with the ability to robustly extract "natural associations" or "graph structures" within datasets, facilitating the modelling of relationships between data points. Despite its efficacy, the current clustering method utilizing the graph-based model overlooks the uncertainty associated with random walk access between nodes and the embedded structural information in the data. To address this gap, we present a novel Clustering method for Maximizing Decoding Information within graph-based models, named CMDI. CMDI innovatively incorporates two-dimensional structural information theory into the clustering process, consisting of two phases: graph structure extraction and graph vertex partitioning. Within CMDI, graph partitioning is reformulated as an abstract clustering problem, leveraging maximum decoding information to minimize uncertainty associated with random visits to vertices. Empirical evaluations on three real-world datasets demonstrate that CMDI outperforms classical baseline methods, exhibiting a superior decoding information ratio (DI-R). Furthermore, CMDI showcases heightened efficiency, particularly when considering prior knowledge (PK). These findings underscore the effectiveness of CMDI in enhancing decoding information quality and computational efficiency, positioning it as a valuable tool in graph-based clustering analyses.
- Abstract(参考訳): グラフモデルに基づくクラスタリング手法は,様々な知識領域にまたがる適用性に注目が集まっている。
他の関連するアプリケーションとシームレスに統合する適応性は、グラフモデルに基づくクラスタリング分析に、データセット内で「自然な関連」や「グラフ構造」を堅牢に抽出する能力を与え、データポイント間の関係のモデリングを容易にする。
その有効性にもかかわらず、グラフベースモデルを用いた現在のクラスタリング手法は、ノード間のランダムウォークアクセスとデータ内の組込み構造情報に関連する不確実性を見落としている。
このギャップに対処するために, CMDI と呼ばれるグラフベースモデル内でのデコード情報の最大化のためのクラスタリング手法を提案する。
CMDIは、グラフ構造抽出とグラフ頂点分割という2つのフェーズからなるクラスタリングプロセスに、2次元構造情報理論を革新的に組み入れている。
CMDI内では、グラフ分割は抽象的なクラスタリング問題として再構成され、最大復号情報を利用して、頂点へのランダムな訪問に関連する不確実性を最小限に抑える。
3つの実世界のデータセットに対する実証的な評価は、CMDIが古典的ベースライン法よりも優れており、より優れた復号化情報比(DI-R)を示すことを示している。
さらにCMDIは,特に事前知識(PK)を考慮した場合,高い効率性を示す。
これらの結果から,デコード情報の品質と計算効率を向上させるCMDIの有効性が示され,グラフベースのクラスタリング解析において貴重なツールとして位置づけられた。
関連論文リスト
- A Dual Adaptive Assignment Approach for Robust Graph-Based Clustering [19.548297224070076]
我々は、ロバストグラフベースクラスタリング(RDSA)のためのDual Adaptive Assignment Approachと呼ばれる新しいフレームワークを導入する。
RDSAは3つの主要なコンポーネントから構成される: (i) グラフのトポロジ的特徴とノード属性を効果的に統合するノード埋め込みモジュール、 (ii) ノード割り当てに親和性行列を利用することでグラフモジュラリティを改善する構造ベースのソフトアサインモジュール、 (iii) コミュニティランドマークを識別し、モデルの堅牢性を高めるためにノード割り当てを洗練させるノードベースのソフトアサインモジュール。
この結果から,RDSAはクラスタリングの有効性やロバスト性,適応性など,グラフの種類によって堅牢なクラスタリングを実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-29T05:18:34Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
CGCNと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,事前学習プロセスにコントラスト信号と深部構造情報を導入している。
本手法は,複数の実世界のグラフデータセットに対して実験的に検証されている。
論文 参考訳(メタデータ) (2024-08-08T09:49:26Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
本稿では,Dual Information enhanced Multi-view Attributed Graph Clustering (DIAGC)法を提案する。
提案手法では,複数の視点からのコンセンサスと特定情報の探索を阻害する特定情報再構成(SIR)モジュールを提案する。
相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、高レベル表現が所望のクラスタリング構造を満たすことを可能にする。
論文 参考訳(メタデータ) (2022-11-28T01:18:04Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Graph-based hierarchical record clustering for unsupervised entity
resolution [0.0]
我々はData Washing Machine (DWM)という最先端の確率的フレームワークを構築している。
グラフベースの階層型2ステップレコードクラスタリング手法(GDWM)を導入し,マッチングしたレコードペアにおいて,まず大きな,接続されたコンポーネントやソフトクラスタを識別する。
その後、発見されたソフトクラスタを階層的な方法でより正確なエンティティクラスタに分割する。
論文 参考訳(メタデータ) (2021-12-12T21:58:07Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。