Accurately Predicting Probabilities of Safety-Critical Rare Events for Intelligent Systems
- URL: http://arxiv.org/abs/2403.13869v3
- Date: Fri, 5 Apr 2024 15:48:03 GMT
- Title: Accurately Predicting Probabilities of Safety-Critical Rare Events for Intelligent Systems
- Authors: Ruoxuan Bai, Jingxuan Yang, Weiduo Gong, Yi Zhang, Qiujing Lu, Shuo Feng,
- Abstract summary: This study endeavors to develop a criticality prediction model that excels in both precision and recall rates.
To validate our approach, we evaluate it in two cases: lunar lander and bipedal walker scenarios.
- Score: 6.229278037668383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent systems are increasingly integral to our daily lives, yet rare safety-critical events present significant latent threats to their practical deployment. Addressing this challenge hinges on accurately predicting the probability of safety-critical events occurring within a given time step from the current state, a metric we define as 'criticality'. The complexity of predicting criticality arises from the extreme data imbalance caused by rare events in high dimensional variables associated with the rare events, a challenge we refer to as the curse of rarity. Existing methods tend to be either overly conservative or prone to overlooking safety-critical events, thus struggling to achieve both high precision and recall rates, which severely limits their applicability. This study endeavors to develop a criticality prediction model that excels in both precision and recall rates for evaluating the criticality of safety-critical autonomous systems. We propose a multi-stage learning framework designed to progressively densify the dataset, mitigating the curse of rarity across stages. To validate our approach, we evaluate it in two cases: lunar lander and bipedal walker scenarios. The results demonstrate that our method surpasses traditional approaches, providing a more accurate and dependable assessment of criticality in intelligent systems.
Related papers
- Cautious Calibration in Binary Classification [1.6954767541769011]
Being cautious is crucial for enhancing the trustworthiness of machine learning systems.
In high-risk scenarios, it is important for each predicted probability to lean towards underconfidence.
In this study, we introduce the novel concept of cautious calibration in binary classification.
arXiv Detail & Related papers (2024-08-09T15:19:40Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
This paper proposes a risk-aware trajectory prediction framework tailored to safety-critical scenarios.
We introduce a safety-critical trajectory prediction dataset and tailored evaluation metrics.
Results demonstrate the superior performance of our model, with a significant improvement in most metrics.
arXiv Detail & Related papers (2024-07-18T13:00:01Z) - Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification [8.213390074932132]
This paper evaluates different uncertainty quantification methods from the deep learning domain for the anticipatory testing of safety-critical misbehaviours.
We compute uncertainty scores as the vehicle executes, following the intuition that high uncertainty scores are indicative of unsupported runtime conditions.
In our study, we conducted an evaluation of the effectiveness and computational overhead associated with two uncertainty quantification methods, namely MC- Dropout and Deep Ensembles, for misbehaviour avoidance.
arXiv Detail & Related papers (2024-04-29T10:28:28Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Building Safe and Reliable AI systems for Safety Critical Tasks with
Vision-Language Processing [1.2183405753834557]
Current AI algorithms are unable to identify common causes for failure detection.
Additional techniques are required to quantify the quality of predictions.
This thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering.
arXiv Detail & Related papers (2023-08-06T18:05:59Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Uncertainty-Aware Multiple Instance Learning fromLarge-Scale Long Time
Series Data [20.2087807816461]
This paper proposes an uncertainty-aware multiple instance (MIL) framework to identify the most relevant periodautomatically.
We further incorporate another modality toaccommodate unreliable predictions by training a separate model and conduct uncertainty aware fusion.
Empirical resultsdemonstrate that the proposed method can effectively detect thetypes of vessels based on the trajectory.
arXiv Detail & Related papers (2021-11-16T17:09:02Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
Adversarial robustness has attracted extensive studies recently by revealing the vulnerability and intrinsic characteristics of deep networks.
In this work we investigate the adversarial vulnerability as well as defense under long-tailed distributions.
We propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant and data re-balancing.
arXiv Detail & Related papers (2021-04-06T17:53:08Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
Many real-world problems of interest exhibit non-stationarity, and when stakes are high, the cost associated with a false stationarity assumption may be unacceptable.
We take the first steps towards ensuring safety, with high confidence, for smoothly-varying non-stationary decision problems.
Our proposed method extends a type of safe algorithm, called a Seldonian algorithm, through a synthesis of model-free reinforcement learning with time-series analysis.
arXiv Detail & Related papers (2020-10-23T20:13:51Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.