Uncertainty-Aware Multiple Instance Learning fromLarge-Scale Long Time
Series Data
- URL: http://arxiv.org/abs/2111.08625v2
- Date: Wed, 17 Nov 2021 19:11:47 GMT
- Title: Uncertainty-Aware Multiple Instance Learning fromLarge-Scale Long Time
Series Data
- Authors: Yuansheng Zhu, Weishi Shi, Deep Shankar Pandey, Yang Liu, Xiaofan Que,
Daniel E. Krutz, and Qi Yu
- Abstract summary: This paper proposes an uncertainty-aware multiple instance (MIL) framework to identify the most relevant periodautomatically.
We further incorporate another modality toaccommodate unreliable predictions by training a separate model and conduct uncertainty aware fusion.
Empirical resultsdemonstrate that the proposed method can effectively detect thetypes of vessels based on the trajectory.
- Score: 20.2087807816461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework to classify large-scale time series data with
long duration. Long time seriesclassification (L-TSC) is a challenging problem
because the dataoften contains a large amount of irrelevant information to
theclassification target. The irrelevant period degrades the classifica-tion
performance while the relevance is unknown to the system.This paper proposes an
uncertainty-aware multiple instancelearning (MIL) framework to identify the
most relevant periodautomatically. The predictive uncertainty enables designing
anattention mechanism that forces the MIL model to learn from thepossibly
discriminant period. Moreover, the predicted uncertaintyyields a principled
estimator to identify whether a prediction istrustworthy or not. We further
incorporate another modality toaccommodate unreliable predictions by training a
separate modelbased on its availability and conduct uncertainty aware fusion
toproduce the final prediction. Systematic evaluation is conductedon the
Automatic Identification System (AIS) data, which is col-lected to identify and
track real-world vessels. Empirical resultsdemonstrate that the proposed method
can effectively detect thetypes of vessels based on the trajectory and the
uncertainty-awarefusion with other available data modality
(Synthetic-ApertureRadar or SAR imagery is used in our experiments) can
furtherimprove the detection accuracy.
Related papers
- Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Probabilistic Learning of Multivariate Time Series with Temporal
Irregularity [25.91078012394032]
temporal irregularities, including nonuniform time intervals and component misalignment.
We develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian.
The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.
arXiv Detail & Related papers (2023-06-15T14:08:48Z) - A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection [25.947610541430013]
We introduce a data-driven measure of uncertainty relative to an observer for misclassification detection.
By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples.
We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.
arXiv Detail & Related papers (2023-06-02T17:32:03Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs [29.84563789289183]
Uncertainty quantification is crucial for building reliable and trustable machine learning systems.
We propose to estimate uncertainty in recurrent neural networks (RNNs) via discrete state transitions over recurrent timesteps.
The uncertainty of the model can be quantified by running a prediction several times, each time sampling from the recurrent state transition distribution.
arXiv Detail & Related papers (2020-11-24T10:35:28Z) - Uncertainty-Aware Deep Ensembles for Reliable and Explainable
Predictions of Clinical Time Series [21.11327248500246]
We propose a deep ensemble approach for explaining deep learning-based time series predictions.
A measure of uncertainty in the relevance scores is computed by taking the standard deviation across the relevance scores produced by each model.
Results demonstrate that the proposed ensemble is more accurate in locating relevant time steps.
arXiv Detail & Related papers (2020-10-16T10:32:06Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.