論文の概要: Shortchanged: Uncovering and Analyzing Intimate Partner Financial Abuse in Consumer Complaints
- arxiv url: http://arxiv.org/abs/2403.13944v1
- Date: Wed, 20 Mar 2024 19:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:09:14.982068
- Title: Shortchanged: Uncovering and Analyzing Intimate Partner Financial Abuse in Consumer Complaints
- Title(参考訳): Shortchanged:消費者苦情における親密なパートナーの財務的悪用の発見と分析
- Authors: Arkaprabha Bhattacharya, Kevin Lee, Vineeth Ravi, Jessica Staddon, Rosanna Bellini,
- Abstract要約: デジタル金融サービスは、ユーザー、特に親密なパートナー金融悪用(IPFA)の生存者に新たなデジタル安全リスクをもたらすことができる
顧客270万件の苦情のデータセットから、言語モデリング技術と専門家による人間のレビューを利用してIPFAを記述した苦情を識別するbspokeワークフローを実装した。
我々の貢献は2つあり、我々はこの見落とされがちな害に対する最初の人間ラベル付きデータセットを提供し、IPFAの生存者のより良い支援と保護のための技術的実践、研究、設計に実践的な意味を提供する。
- 参考スコア(独自算出の注目度): 10.746634884866037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital financial services can introduce new digital-safety risks for users, particularly survivors of intimate partner financial abuse (IPFA). To offer improved support for such users, a comprehensive understanding of their support needs and the barriers they face to redress by financial institutions is essential. Drawing from a dataset of 2.7 million customer complaints, we implement a bespoke workflow that utilizes language-modeling techniques and expert human review to identify complaints describing IPFA. Our mixed-method analysis provides insight into the most common digital financial products involved in these attacks, and the barriers consumers report encountering when doing so. Our contributions are twofold; we offer the first human-labeled dataset for this overlooked harm and provide practical implications for technical practice, research, and design for better supporting and protecting survivors of IPFA.
- Abstract(参考訳): デジタル金融サービスは、ユーザー、特に親密なパートナー金融悪用(IPFA)の生存者に対して、新たなデジタル安全リスクを導入することができる。
このようなユーザへのサポートの改善を実現するためには、支援ニーズと金融機関が直面する障壁の包括的理解が不可欠である。
顧客270万件の苦情のデータセットから、言語モデリング技術と専門家による人間のレビューを利用してIPFAを記述した苦情を識別するbspokeワークフローを実装した。
私たちの混合メソッド分析は、これらの攻撃に関わる最も一般的なデジタル金融製品と、それを行う際に消費者が報告する障壁に関する洞察を提供する。
我々の貢献は2つあり、我々はこの見落とされがちな害に対する最初の人間ラベル付きデータセットを提供し、IPFAの生存者のより良い支援と保護のための技術的実践、研究、設計に実践的な意味を提供する。
関連論文リスト
- MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Enhancing Financial Inclusion and Regulatory Challenges: A Critical Analysis of Digital Banks and Alternative Lenders Through Digital Platforms, Machine Learning, and Large Language Models Integration [0.0]
本稿では,デジタル銀行と代替銀行が金融包摂性に与える影響とビジネスモデルがもたらす規制課題について考察する。
デジタルプラットフォーム、機械学習(ML)、Large Language Models(LLM)の統合について論じる。
論文 参考訳(メタデータ) (2024-04-18T05:00:53Z) - Towards Financially Inclusive Credit Products Through Financial Time
Series Clustering [10.06218778776515]
財政的包摂は消費支出を増大させ、結果として事業開発を加速させる。
消費者取引データに基づく顧客セグメンテーションは、ファイナンシャルインクルージョンを促進するためによく知られた戦略である。
本稿では,顧客の財務状況を理解するための時系列クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-16T20:40:30Z) - Starlit: Privacy-Preserving Federated Learning to Enhance Financial
Fraud Detection [2.436659710491562]
Federated Learning(FL)は、さまざまなクライアントとローカルデータの間で協調的なモデルトレーニングを可能にする、データ最小化のアプローチである。
不正な金融取引を識別するための最先端のFLソリューションは、以下の制限のサブセットを示している。
Starlitは,これらの制限を克服する,スケーラブルなプライバシ保護機構である。
論文 参考訳(メタデータ) (2024-01-19T15:37:11Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
本稿では、チャットベースのカスタマーサポートのインタラクションにのみ依存して、個々のユーザの推薦決定を予測するフレームワークを提案する。
ケーススタディでは、ラテンアメリカの大手電子商取引会社の金融分野における16.4kのユーザ数と48.7kの顧客サポートに関する会話を分析した。
以上の結果から,CS会話のメッセージワイドな感情進化のみに基づいて,ユーザが製品やサービスを推薦する可能性を予測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-11-08T00:43:36Z) - Know Your Customer: Balancing Innovation and Regulation for Financial
Inclusion [8.657646730603098]
ファイナンシャル・インクルージョンを目的としたプライバシーに敏感な技術の展開に緊張がどのような影響を及ぼすかを検討する。
我々は,オープンソースの分散識別子と検証可能な認証ソフトウェアに基づくプロトタイプソリューションを構築し,実証する。
これらの緊張から引き起こされる政策含意を考察し、関連する技術をさらに設計するためのガイドラインを提供する。
論文 参考訳(メタデータ) (2021-12-17T21:09:51Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
クレジットカード不正を早期に検出するための,スーパーアプリ顧客情報,携帯電話回線データ,従来型の信用リスク変数を融合した機能レベルの有効性について検討する。
クレジットカードのデジタルプラットフォームデータベースから約9万人のユーザを対象に,我々のアプローチを評価した。
論文 参考訳(メタデータ) (2021-11-05T19:10:35Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Identifying and Supporting Financially Vulnerable Consumers in a
Privacy-Preserving Manner: A Use Case Using Decentralised Identifiers and
Verifiable Credentials [0.19573380763700707]
脆弱性のある個人は、合理的な金銭的決定と選択を行う能力に制限がある。
本稿では、金融の脆弱な消費者を特定するために、分散ID(Decentralized Identifiers)とVC(Verifiable Credentials)の2つの新興技術の組み合わせの可能性を検討する。
論文 参考訳(メタデータ) (2021-06-10T21:05:34Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
スーパーアプリは、ユーザーとコマースの相互作用についての考え方を変えました。
本稿では,スーパーアプリ内のユーザ間のインタラクションの違いが,借り手行動を予測する新たな情報源となるかを検討する。
論文 参考訳(メタデータ) (2021-02-19T15:13:06Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。