論文の概要: ERD: A Framework for Improving LLM Reasoning for Cognitive Distortion Classification
- arxiv url: http://arxiv.org/abs/2403.14255v1
- Date: Thu, 21 Mar 2024 09:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:48:00.564265
- Title: ERD: A Framework for Improving LLM Reasoning for Cognitive Distortion Classification
- Title(参考訳): ERD:認知歪み分類のためのLLM推論改善フレームワーク
- Authors: Sehee Lim, Yejin Kim, Chi-Hyun Choi, Jy-yong Sohn, Byung-Hoon Kim,
- Abstract要約: 本稿では,追加モジュールの助けを借りて認知歪み分類性能を向上させるERDを提案する。
公開データセットを用いた実験結果から,ERDは多クラスF1スコアとバイナリ特異性スコアを改善した。
- 参考スコア(独自算出の注目度): 14.644324586153866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the accessibility of psychotherapy with the aid of Large Language Models (LLMs) is garnering a significant attention in recent years. Recognizing cognitive distortions from the interviewee's utterances can be an essential part of psychotherapy, especially for cognitive behavioral therapy. In this paper, we propose ERD, which improves LLM-based cognitive distortion classification performance with the aid of additional modules of (1) extracting the parts related to cognitive distortion, and (2) debating the reasoning steps by multiple agents. Our experimental results on a public dataset show that ERD improves the multi-class F1 score as well as binary specificity score. Regarding the latter score, it turns out that our method is effective in debiasing the baseline method which has high false positive rate, especially when the summary of multi-agent debate is provided to LLMs.
- Abstract(参考訳): 近年,Large Language Models (LLMs) による心理療法のアクセシビリティ向上が注目されている。
面接者の発話からの認知的歪みを認識することは、特に認知行動療法において、心理療法の不可欠な部分である。
本稿では,(1)認知歪みに関連する部分を抽出し,(2)複数のエージェントによる推論ステップを議論することで,LCMに基づく認知歪み分類性能を向上させるERDを提案する。
公開データセットを用いた実験結果から,ERDは多クラスF1スコアとバイナリ特異性スコアを改善した。
後者のスコアに関して,本手法は偽陽性率の高いベースライン法,特にマルチエージェント討論の要約をLCMに提供した場合に有効であることが判明した。
関連論文リスト
- DEAL: Decoupled Classifier with Adaptive Linear Modulation for Group Robust Early Diagnosis of MCI to AD Conversion [16.723285384727028]
深層学習に基づくアルツハイマー病の診断は、最近大きな進歩を遂げた。
診断のグループロバスト性についての研究には、依然として重大なギャップが残っている。
MRI画像を用いてMCIからADへの変換の早期診断におけるグループロバスト性の最初の包括的調査を行った。
論文 参考訳(メタデータ) (2024-11-16T14:30:46Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
我々は,MARLHF(Multi-Agent Reinforcement Learning from Human Feedback)について検討し,理論的基礎と実証的検証の両方について検討した。
我々は,このタスクを,一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ均衡を識別するものとして定義する。
本研究は,MARLHFの多面的アプローチを基礎として,効果的な嗜好に基づくマルチエージェントシステムの実現を目指している。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends [38.86240794422485]
対話要約のための大規模言語モデルの忠実度を評価する。
私たちの評価は幻覚を構成するものに関して微妙な点を呈する。
既存の指標より優れた微細な誤差検出のための2つのプロンプトベースのアプローチを導入する。
論文 参考訳(メタデータ) (2024-06-05T17:49:47Z) - Exploring the Efficacy of Large Language Models in Summarizing Mental
Health Counseling Sessions: A Benchmark Study [17.32433545370711]
セッションの包括的な要約は、メンタルヘルスカウンセリングにおいて効果的な継続を可能にする。
手動要約は、専門家の注意をコアカウンセリングプロセスから逸脱させ、重要な課題を呈する。
本研究は、治療セッションの様々な構成要素を選択的に要約する上で、最先端の大規模言語モデル(LLM)の有効性を評価する。
論文 参考訳(メタデータ) (2024-02-29T11:29:47Z) - Illuminate: A novel approach for depression detection with explainable
analysis and proactive therapy using prompt engineering [0.0]
本稿では,GPT-4(Generative Pre-trained Transformer 4),Llama 2 chat,およびGeminiを用いた抑うつ検出・治療のための新しいパラダイムを提案する。
LLMは、うつ病の診断、説明、治療介入を提案する特別なプロンプトで微調整されている。
論文 参考訳(メタデータ) (2024-02-05T06:08:06Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。