論文の概要: Large Language Models for Blockchain Security: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2403.14280v4
- Date: Sat, 11 May 2024 16:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 23:54:21.942387
- Title: Large Language Models for Blockchain Security: A Systematic Literature Review
- Title(参考訳): ブロックチェーンセキュリティのための大規模言語モデル - 体系的な文献レビュー
- Authors: Zheyuan He, Zihao Li, Sen Yang, Ao Qiao, Xiaosong Zhang, Xiapu Luo, Ting Chen,
- Abstract要約: 大規模言語モデル(LLM)は、サイバーセキュリティの様々な領域にまたがる強力なツールとして登場した。
本研究の目的は,既存の研究を包括的に分析し,LLMがブロックチェーンシステムのセキュリティ向上にどのように貢献するかを明らかにすることである。
- 参考スコア(独自算出の注目度): 32.36531880327789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools across various domains within cyber security. Notably, recent studies are increasingly exploring LLMs applied to the context of blockchain security (BS). However, there remains a gap in a comprehensive understanding regarding the full scope of applications, impacts, and potential constraints of LLMs on blockchain security. To fill this gap, we undertake a literature review focusing on the studies that apply LLMs in blockchain security (LLM4BS). Our study aims to comprehensively analyze and understand existing research, and elucidate how LLMs contribute to enhancing the security of blockchain systems. Through a thorough examination of existing literature, we delve into the integration of LLMs into various aspects of blockchain security. We explore the mechanisms through which LLMs can bolster blockchain security, including their applications in smart contract auditing, transaction anomaly detection, vulnerability repair, program analysis of smart contracts, and serving as participants in the cryptocurrency community. Furthermore, we assess the challenges and limitations associated with leveraging LLMs for enhancing blockchain security, considering factors such as scalability, privacy concerns, and ethical concerns. Our thorough review sheds light on the opportunities and potential risks of tasks on LLM4BS, providing valuable insights for researchers, practitioners, and policymakers alike.
- Abstract(参考訳): 大規模言語モデル(LLM)は、サイバーセキュリティの様々な領域にまたがる強力なツールとして登場した。
特に最近の研究は、ブロックチェーンセキュリティ(BS)のコンテキストに適用可能なLSMを探求している。
しかしながら、アプリケーションの全範囲、影響、LLMのブロックチェーンセキュリティに対する潜在的な制約に関する包括的な理解には、依然としてギャップがある。
このギャップを埋めるために、私たちは、LLMをブロックチェーンセキュリティ(LLM4BS)に適用する研究に焦点を当てた文献レビューを実施します。
本研究の目的は,既存の研究を包括的に分析し,LLMがブロックチェーンシステムのセキュリティ向上にどのように貢献するかを明らかにすることである。
既存の文献の徹底的な調査を通じて、LLMをブロックチェーンセキュリティのさまざまな側面に統合する方法について検討する。
スマートコントラクト監査、トランザクション異常検出、脆弱性修復、スマートコントラクトのプログラム分析、暗号通貨コミュニティの参加者としての役割など、LLMがブロックチェーンセキュリティを強化するメカニズムについて検討する。
さらに、スケーラビリティ、プライバシの懸念、倫理的懸念といった要因を考慮して、ブロックチェーンセキュリティの強化にLLMを活用する際の課題と制限を評価します。
我々の徹底的なレビューは、LSM4BSにおけるタスクの機会と潜在的なリスクを明らかにし、研究者、実践家、政策立案者にも貴重な洞察を与えます。
関連論文リスト
- Large Language Model Supply Chain: Open Problems From the Security Perspective [25.320736806895976]
大規模言語モデル(LLM)はソフトウェア開発パラダイムを変えつつあり、学術と産業の両方から大きな注目を集めています。
各コンポーネントの潜在的なセキュリティリスクとLCM SCのコンポーネント間の統合について議論する第一歩を踏み出します。
論文 参考訳(メタデータ) (2024-11-03T15:20:21Z) - Blockchain for Large Language Model Security and Safety: A Holistic Survey [2.385985842958366]
大規模な言語モデルのセキュリティと安全性を高めるためにブロックチェーン技術を活用する方法を評価することを目的としています。
本稿では,大規模言語モデル(BC4LLM)のためのブロックチェーンの新しい分類法を提案する。
私たちの分析には、BC4LLMのコンテキストにおけるセキュリティと安全性を規定する新しいフレームワークと定義が含まれています。
論文 参考訳(メタデータ) (2024-07-26T15:24:01Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - A New Era in LLM Security: Exploring Security Concerns in Real-World
LLM-based Systems [47.18371401090435]
我々は,LLMではなく,Large Language Model(LLM)システムのセキュリティを分析する。
我々は,多層・多段階のアプローチを提案し,これを最先端のOpenAI GPT4に適用する。
OpenAI GPT4は安全機能を改善するために多くの安全制約を設計しているが、これらの安全制約は攻撃者に対して脆弱である。
論文 参考訳(メタデータ) (2024-02-28T19:00:12Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
大規模言語モデル(LLM)は、自然言語の理解と生成に革命をもたらした。
本稿では,LLMとセキュリティとプライバシの交わりについて考察する。
論文 参考訳(メタデータ) (2023-12-04T16:25:18Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。