論文の概要: Exploring Green AI for Audio Deepfake Detection
- arxiv url: http://arxiv.org/abs/2403.14290v1
- Date: Thu, 21 Mar 2024 10:54:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:38:14.972391
- Title: Exploring Green AI for Audio Deepfake Detection
- Title(参考訳): オーディオディープフェイク検出のためのグリーンAIの探索
- Authors: Subhajit Saha, Md Sahidullah, Swagatam Das,
- Abstract要約: ディープニューラルネットワークを利用した最先端のオーディオディープフェイク検出器は、印象的な認識性能を示している。
ディープNLPモデルはCOtextsubscript2の約626klbのCOtextsubscript2を生成する。
そこで本研究では,標準CPUリソースを用いてシームレスにトレーニング可能な,オーディオディープフェイク検出のための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.17957700009653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state-of-the-art audio deepfake detectors leveraging deep neural networks exhibit impressive recognition performance. Nonetheless, this advantage is accompanied by a significant carbon footprint. This is mainly due to the use of high-performance computing with accelerators and high training time. Studies show that average deep NLP model produces around 626k lbs of CO\textsubscript{2} which is equivalent to five times of average US car emission at its lifetime. This is certainly a massive threat to the environment. To tackle this challenge, this study presents a novel framework for audio deepfake detection that can be seamlessly trained using standard CPU resources. Our proposed framework utilizes off-the-shelve self-supervised learning (SSL) based models which are pre-trained and available in public repositories. In contrast to existing methods that fine-tune SSL models and employ additional deep neural networks for downstream tasks, we exploit classical machine learning algorithms such as logistic regression and shallow neural networks using the SSL embeddings extracted using the pre-trained model. Our approach shows competitive results compared to the commonly used high-carbon footprint approaches. In experiments with the ASVspoof 2019 LA dataset, we achieve a 0.90\% equal error rate (EER) with less than 1k trainable model parameters. To encourage further research in this direction and support reproducible results, the Python code will be made publicly accessible following acceptance. Github: https://github.com/sahasubhajit/Speech-Spoofing-
- Abstract(参考訳): ディープニューラルネットワークを利用した最先端のオーディオディープフェイク検出器は、印象的な認識性能を示している。
それでも、この利点には炭素のフットプリントが伴う。
これは主に、アクセラレータによる高性能コンピューティングの使用と、高速なトレーニング時間による。
研究によると、平均深度NLPモデルは約626klbのCO\textsubscript{2}を生産しており、これはその寿命における平均アメリカ車の排出量の5倍に相当する。
これは環境にとって大きな脅威だ。
この課題に対処するために,本研究では,標準CPUリソースを用いてシームレスにトレーニング可能な,オーディオディープフェイク検出のための新しいフレームワークを提案する。
提案フレームワークは,自己教師付き学習(SSL)ベースのモデルを用いて,公開リポジトリで事前学習し,利用できる。
SSLモデルを微調整し、下流タスクに深層ニューラルネットワークを付加する既存の手法とは対照的に、事前学習モデルを用いて抽出したSSL埋め込みを用いてロジスティック回帰や浅部ニューラルネットワークのような古典的な機械学習アルゴリズムを利用する。
提案手法は, 一般的な高炭素フットプリント法と比較して, 競合性を示す。
ASVspoof 2019 LAデータセットを用いた実験では、1k以下のトレーニング可能なモデルパラメータで0.90\%のエラー率(EER)を達成した。
この方向のさらなる研究を奨励し、再現可能な結果をサポートするため、Pythonコードは受け入れ後、一般公開される予定である。
Github:https://github.com/sahasubhajit/Speech-Spoofing-
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Legged Robot State Estimation With Invariant Extended Kalman Filter
Using Neural Measurement Network [2.0405494347486197]
我々は、ニューラルネットワーク(NMN)と不変拡張カルマンフィルタを統合する状態推定フレームワークを開発した。
提案手法は,既存のモデルベース状態推定器と比較して位置ドリフトを著しく低減する。
論文 参考訳(メタデータ) (2024-02-01T06:06:59Z) - UNFUSED: UNsupervised Finetuning Using SElf supervised Distillation [53.06337011259031]
音声分類に自己教師付き学習を活用する新しい手法UnFuSeDを提案する。
エンコーダを用いて、実際の微調整ステップの前に、教師なしの微調整のための擬似ラベルを生成する。
UnFuSeDはLAPEベンチマークで最先端の結果を達成し、すべてのベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2023-03-10T02:43:36Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - The Devil Is in the Details: An Efficient Convolutional Neural Network
for Transport Mode Detection [3.008051369744002]
トランスポートモード検出は、マルチモーダル信号が与えられたユーザのトランスポートモードを推測できるアルゴリズムを設計することを目的とした分類問題である。
小型で最適化されたモデルが、現在のディープモデルと同様に動作可能であることを示す。
論文 参考訳(メタデータ) (2021-09-16T08:05:47Z) - A robust approach for deep neural networks in presence of label noise:
relabelling and filtering instances during training [14.244244290954084]
我々は、任意のCNNで使用できるRAFNIと呼ばれるラベルノイズに対する堅牢なトレーニング戦略を提案する。
RAFNIは、インスタンスをフィルタリングする2つのメカニズムと、インスタンスをリラベルする1つのメカニズムからなる。
いくつかのサイズと特徴の異なるデータセットを用いて,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-09-08T16:11:31Z) - Cascade Bagging for Accuracy Prediction with Few Training Samples [8.373420721376739]
少数のトレーニングサンプルの下で精度予測器を訓練するための新しいフレームワークを提案する。
このフレームワークは、データ拡張方法とアンサンブル学習アルゴリズムからなる。
論文 参考訳(メタデータ) (2021-08-12T09:10:52Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - A Deep Unsupervised Feature Learning Spiking Neural Network with
Binarized Classification Layers for EMNIST Classification using SpykeFlow [0.0]
二成分アクティベーションを用いたスパイクタイミング依存塑性(STDP)の教師なし学習技術は、スパイク入力データから特徴を抽出するために用いられる。
バランスの取れたEMNISTデータセットに対するアキュラシーは、他のアプローチと好意的に比較した。
論文 参考訳(メタデータ) (2020-02-26T23:47:35Z) - REST: Robust and Efficient Neural Networks for Sleep Monitoring in the
Wild [62.36144064259933]
ニューラルネットワークの逆トレーニングとLipschitz定数の制御を通じて、両問題に同時に対処する新しい方法であるRESTを提案する。
私たちは、RESTがノイズの存在下で、オリジナルのフルサイズのモデルを大幅に上回る、ロバストで効率的なモデルを生成することを実証しています。
これらのモデルをスマートフォン上のAndroidアプリケーションにデプロイすることにより、RESTによってモデルが最大17倍のエネルギー削減と9倍高速な推論を達成することができることを定量的に観察する。
論文 参考訳(メタデータ) (2020-01-29T17:23:16Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。