Diffraction phase-free Bragg atom interferometry
- URL: http://arxiv.org/abs/2505.23921v1
- Date: Thu, 29 May 2025 18:12:53 GMT
- Title: Diffraction phase-free Bragg atom interferometry
- Authors: Víctor J. Martínez Lahuerta, Jan-Niclas Kirsten-Siemß, Klemens Hammerer, Naceur Gaaloul,
- Abstract summary: We consider the finite temperature of the incoming wavepacket and the multi-path nature of high-order Bragg diffraction.<n>Our approach can achieve diffraction phases on the order of microradians or even below a microradian for a momentum width of the incoming wavepacket.
- Score: 0.09782246441301058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bragg diffraction is a fundamental technique used to enhance the sensitivity of atom interferometers through large momentum transfer, making these devices among the most precise quantum sensors available today. To further improve their accuracy, it is necessary to achieve control over multiple interferometer paths and increase robustness against velocity spread. Optimal control theory has recently led to advancements in sensitivity and robustness under specific conditions, such as vibrations, accelerations, and other experimental challenges. In this work, we employ this tool to focus on improving the accuracy of the interferometer by minimizing the diffraction phase. We consider the finite temperature of the incoming wavepacket and the multi-path nature of high-order Bragg diffraction as showcased in a Mach-Zehnder(MZ) geometry. Our approach can achieve diffraction phases on the order of microradians or even below a microradian for a momentum width of the incoming wavepacket $\sigma_p = 0.01\hbar k$, below a milliradian for $\sigma_p= 0.1 \hbar k$ and milliradians for $\sigma_p = 0.3 \hbar k$.
Related papers
- Dichroic mirror pulses for optimized higher-order atomic Bragg diffraction [0.0]
We present the experimental realization of dichroic mirror pulses for atom interferometry.<n>Our approach selectively reflects resonant atom paths into the detected interferometer output.<n> parasitic paths are efficiently transmitted by the mirror and not directed to the relevant interferometer outputs.
arXiv Detail & Related papers (2024-08-27T12:10:45Z) - Optimal Floquet Engineering for Large Scale Atom Interferometers [0.0]
We present a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.
We demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils between its two arms.
Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales.
arXiv Detail & Related papers (2024-03-21T12:05:58Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Achieving the fundamental quantum limit of linear waveform estimation [10.363406065066538]
In certain cases, there is an unexplained gap between the known waveform-estimation Quantum Cram'er-Rao Bound and the optimal sensitivity from quadrature measurement of the outgoing mode from the device.
We resolve this gap by establishing the fundamental precision limit, the waveform-estimation Holevo Cram'er-Rao Bound, and how to achieve it using a nonstationary measurement.
arXiv Detail & Related papers (2023-08-11T17:38:30Z) - Estimating IF shifts based on SU(1,1) interferometer [0.0]
We propose a theoretical scheme to investigate the IF shifts and incident angle sensitivity by introducing SPR sensor into the SU (1,1) interferometer.
By injecting two coherent states in the SU (1,1) interferometer, we obtain the sensitivity of the IF shifts and incident angle based on the homodyne detection.
Our results can be helpful in the development of more precise quantum-based sensors for studying light-matter interactions.
arXiv Detail & Related papers (2023-07-01T10:16:35Z) - Atom interferometry with coherent enhancement of Bragg pulse sequences [41.94295877935867]
We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold atom interferometer.
We highlight a new mechanism of destructive interference of the losses leading to a sizeable efficiency enhancement of the beam splitters.
arXiv Detail & Related papers (2023-05-16T15:00:05Z) - Large-momentum-transfer atom interferometers with $\mu$rad-accuracy
using Bragg diffraction [0.0]
LMT atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date.
We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations.
arXiv Detail & Related papers (2022-08-13T13:31:29Z) - Optimal control of a nitrogen-vacancy spin ensemble in diamond for
sensing in the pulsed domain [52.77024349608834]
Defects in solid state materials provide an ideal platform for quantum sensing.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any control field across a macroscopic sample.
We experimentally demonstrate that we can overcome these challenges using Floquet theory and optimal control optimization methods.
arXiv Detail & Related papers (2021-01-25T13:01:05Z) - Hyper Ramsey-Bord\'e matter-wave interferometry for robust quantum
sensors [0.0]
A new generation of atomic sensors using ultra-narrow optical clock transitions and composite pulses are pushing quantum engineering control to a very high level of precision.
We propose a new version of Ramsey-Bord'e interferometry introducing arbitrary composite laser pulses with tailored pulse duration, Rabi field, detuning and phase-steps.
We present, for the first time, new developments for robust hyper Ramsey-Bord'e and Mach-Zehnder interferometers.
arXiv Detail & Related papers (2020-12-07T17:47:28Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.