A Bag of Tricks for Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2403.14392v2
- Date: Sun, 8 Sep 2024 10:59:16 GMT
- Title: A Bag of Tricks for Few-Shot Class-Incremental Learning
- Authors: Shuvendu Roy, Chunjong Park, Aldi Fahrezi, Ali Etemad,
- Abstract summary: We present a bag of tricks framework for few-shot class-incremental learning (FSCIL)
FSCIL requires both stability and adaptability, preserving proficiency in previously learned tasks while learning new ones.
We organize these tricks into three categories: stability tricks, adaptability tricks, and training tricks.
- Score: 20.95422402702963
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a bag of tricks framework for few-shot class-incremental learning (FSCIL), which is a challenging form of continual learning that involves continuous adaptation to new tasks with limited samples. FSCIL requires both stability and adaptability, i.e., preserving proficiency in previously learned tasks while learning new ones. Our proposed bag of tricks brings together six key and highly influential techniques that improve stability, adaptability, and overall performance under a unified framework for FSCIL. We organize these tricks into three categories: stability tricks, adaptability tricks, and training tricks. Stability tricks aim to mitigate the forgetting of previously learned classes by enhancing the separation between the embeddings of learned classes and minimizing interference when learning new ones. On the other hand, adaptability tricks focus on the effective learning of new classes. Finally, training tricks improve the overall performance without compromising stability or adaptability. We perform extensive experiments on three benchmark datasets, CIFAR-100, CUB-200, and miniIMageNet, to evaluate the impact of our proposed framework. Our detailed analysis shows that our approach substantially improves both stability and adaptability, establishing a new state-of-the-art by outperforming prior works in the area. We believe our method provides a go-to solution and establishes a robust baseline for future research in this area.
Related papers
- CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
Few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and forgetting.
Our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL.
We find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between transferability and discriminability.
arXiv Detail & Related papers (2024-10-08T02:23:16Z) - Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations [12.042768320132694]
This paper reformulates cross-dataset human pose estimation as a continual learning task.
We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting.
We show that our approach outperforms existing regularization-based continual learning strategies.
arXiv Detail & Related papers (2024-09-30T16:29:30Z) - FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing [3.533544633664583]
Exemplar-free class-incremental learning (EFCIL) poses significant challenges, primarily due to catastrophic forgetting.
Traditional EFCIL approaches typically skew towards either model plasticity through successive fine-tuning or stability.
This paper builds upon the foundational FeTrIL framework to examine the efficacy of various oversampling techniques and dynamic optimization strategies.
arXiv Detail & Related papers (2024-03-12T08:34:05Z) - Auxiliary Classifiers Improve Stability and Efficiency in Continual Learning [13.309853617922824]
We investigate the stability of intermediate neural network layers during continual learning.
We show auxiliary classifiers (ACs) can leverage this stability to improve performance.
Our findings suggest that ACs offer a promising avenue for enhancing continual learning models.
arXiv Detail & Related papers (2024-03-12T08:33:26Z) - Evaluating and Improving Continual Learning in Spoken Language
Understanding [58.723320551761525]
We propose an evaluation methodology that provides a unified evaluation on stability, plasticity, and generalizability in continual learning.
By employing the proposed metric, we demonstrate how introducing various knowledge distillations can improve different aspects of these three properties of the SLU model.
arXiv Detail & Related papers (2024-02-16T03:30:27Z) - On the Stability-Plasticity Dilemma of Class-Incremental Learning [50.863180812727244]
A primary goal of class-incremental learning is to strike a balance between stability and plasticity.
This paper aims to shed light on how effectively recent class-incremental learning algorithms address the stability-plasticity trade-off.
arXiv Detail & Related papers (2023-04-04T09:34:14Z) - Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning [23.15206507040553]
We propose Auxiliary Network Continual Learning (ANCL) to equip the neural network with the ability to learn the current task.
ANCL applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability.
More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability.
arXiv Detail & Related papers (2023-03-16T17:00:42Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Balancing Stability and Plasticity through Advanced Null Space in
Continual Learning [77.94570903726856]
We propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks.
We also present a simple but effective method, intra-task distillation, to improve the performance of the current task.
Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
arXiv Detail & Related papers (2022-07-25T11:04:22Z) - Towards Better Plasticity-Stability Trade-off in Incremental Learning: A
simple Linear Connector [8.13916229438606]
Plasticity-stability dilemma is a main problem for incremental learning.
We show that a simple averaging of two independently optimized optima of networks, null-space projection for past tasks and simple SGD for the current task, can attain a meaningful balance between preserving already learned knowledge and granting sufficient flexibility for learning a new task.
arXiv Detail & Related papers (2021-10-15T07:37:20Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn multiple tasks sequentially.
We study the effect of dropout, learning rate decay, and batch size, on forming training regimes that widen the tasks' local minima.
arXiv Detail & Related papers (2020-06-12T06:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.