Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations
- URL: http://arxiv.org/abs/2409.20469v1
- Date: Mon, 30 Sep 2024 16:29:30 GMT
- Title: Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations
- Authors: Muhammad Saif Ullah Khan, Muhammad Ahmed Ullah Khan, Muhammad Zeshan Afzal, Didier Stricker,
- Abstract summary: This paper reformulates cross-dataset human pose estimation as a continual learning task.
We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting.
We show that our approach outperforms existing regularization-based continual learning strategies.
- Score: 12.042768320132694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reformulates cross-dataset human pose estimation as a continual learning task, aiming to integrate new keypoints and pose variations into existing models without losing accuracy on previously learned datasets. We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting, including EWC, LFL, and LwF. Moreover, we propose a novel regularization method called Importance-Weighted Distillation (IWD), which enhances conventional LwF by introducing a layer-wise distillation penalty and dynamic temperature adjustment based on layer importance for previously learned knowledge. This allows for a controlled adaptation to new tasks that respects the stability-plasticity balance critical in continual learning. Through extensive experiments across three datasets, we demonstrate that our approach outperforms existing regularization-based continual learning strategies. IWD shows an average improvement of 3.60\% over the state-of-the-art LwF method. The results highlight the potential of our method to serve as a robust framework for real-world applications where models must evolve with new data without forgetting past knowledge.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning [15.475427498268393]
The Train-Attention-Augmented Language Model (TAALM) enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness.
We show that TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches.
arXiv Detail & Related papers (2024-07-24T01:04:34Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
We focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories.
We propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning.
arXiv Detail & Related papers (2023-12-27T04:40:12Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - Online Continual Learning via the Meta-learning Update with Multi-scale
Knowledge Distillation and Data Augmentation [4.109784267309124]
Continual learning aims to rapidly and continually learn the current task from a sequence of tasks.
One common limitation of this method is the data imbalance between the previous and current tasks.
We propose a novel framework called Meta-learning update via Multi-scale Knowledge Distillation and Data Augmentation.
arXiv Detail & Related papers (2022-09-12T10:03:53Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.