論文の概要: VibNet: Vibration-Boosted Needle Detection in Ultrasound Images
- arxiv url: http://arxiv.org/abs/2403.14523v2
- Date: Sat, 22 Feb 2025 13:52:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.248411
- Title: VibNet: Vibration-Boosted Needle Detection in Ultrasound Images
- Title(参考訳): VibNet:超音波画像における振動発振針検出
- Authors: Dianye Huang, Chenyang Li, Angelos Karlas, Xiangyu Chu, K. W. Samuel Au, Nassir Navab, Zhongliang Jiang,
- Abstract要約: VibNetは、米国の画像における針検出の可視性と精度を高めるために設計された学習ベースのフレームワークである。
VibNetはニューラルショートタイムフーリエ変換Hough変換モジュールを統合して、モーション特徴抽出やニードル検出を含む連続的なサブゴールを実現する。
- 参考スコア(独自算出の注目度): 40.64433529217187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise percutaneous needle detection is crucial for ultrasound (US)-guided interventions. However, inherent limitations such as speckles, needle-like artifacts, and low resolution make it challenging to robustly detect needles, especially when their visibility is reduced or imperceptible. To address this challenge, we propose VibNet, a learning-based framework designed to enhance the robustness and accuracy of needle detection in US images by leveraging periodic vibration applied externally to the needle shafts. VibNet integrates neural Short-Time Fourier Transform and Hough Transform modules to achieve successive sub-goals, including motion feature extraction in the spatiotemporal space, frequency feature aggregation, and needle detection in the Hough space. Due to the periodic subtle vibration, the features are more robust in the frequency domain than in the image intensity domain, making VibNet more effective than traditional intensity-based methods. To demonstrate the effectiveness of VibNet, we conducted experiments on distinct \textit{ex vivo} porcine and bovine tissue samples. The results obtained on porcine samples demonstrate that VibNet effectively detects needles even when their visibility is severely reduced, with a tip error of $1.61\pm1.56~mm$ compared to $8.15\pm9.98~mm$ for UNet and $6.63\pm7.58~mm$ for WNet, and a needle direction error of $1.64\pm1.86^{\circ}$ compared to $9.29\pm15.30^{\circ}$ for UNet and $8.54\pm17.92^{\circ}$ for WNet. Code: https://github.com/marslicy/VibNet.
- Abstract(参考訳): 超音波ガイド下手術には経皮的針の精密検出が重要である。
しかし、スペックル、針状アーティファクト、低解像度といった固有の制限は、特にその視認性が低下または受容できない場合には、針を堅牢に検出することを困難にしている。
この課題に対処するため,本研究では,針軸に外部に印加する周期振動を利用して,US画像における針検出の堅牢性と精度を高めるための学習ベースフレームワークであるVibNetを提案する。
VibNetはニューラルショートタイムフーリエ変換とハフ変換モジュールを統合し、時空間における運動特徴抽出、周波数特徴集約、ハフ空間における針検出など、連続したサブゴールを達成する。
周期的な微妙な振動のため、これらの特徴は画像強度領域よりも周波数領域の方が堅牢であり、VibNetは従来の強度に基づく手法よりも効果的である。
VibNetの有効性を実証するため,異なる<textit{ex vivo}ブタおよびウシの組織試料を用いて実験を行った。
ブタのサンプルで得られた結果は、ヴィブネットが視界が著しく低下しても針を効果的に検出し、先端誤差は8.15 pm9.98~mm$、WNetは6.63 pm7.58~mm$、針方向誤差は9.29 pm15.30^{\circ}$、UNetは8.54 pm17.92^{\circ}$であることを示した。
コード:https://github.com/marslicy/VibNet
関連論文リスト
- Learning to Enhance Aperture Phasor Field for Non-Line-of-Sight Imaging [22.365437882740657]
本研究の目的は,サンプリングやスキャンエリアの数を削減し,より実用的なNLOSイメージングを実現することである。
本研究では,デノナイズドオートエンコーダ方式を利用して,測定空間におけるリッチでノイズの多い表現を得る。
我々は、ネットワークのスペクトルを周波数範囲に制限するために、ファサーベースパイプラインを導入する。
論文 参考訳(メタデータ) (2024-07-26T07:57:07Z) - DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images [20.11145540094807]
本稿では、畳み込みバイアスを校正し、高周波により多くの注意を払うために、明示的な周波数領域変換によって支援されるネットワークを提案する。
変換領域ソフトしきい値処理を行う動的周波数領域アテンションモジュールであるTransDenoを設計する。
プラグアンドプレイのTransDenoは、複数のSARターゲット検出データセットに対して最先端のスコアを設定する。
論文 参考訳(メタデータ) (2024-06-05T01:05:26Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network [1.099532646524593]
本稿では,確率論的深層学習モデルを用いた干渉除去手法を提案する。
その結果、変分目的を持つ畳み込みエンコーダデコーダニューラルネットワークは、バイタルサインドップラー時間分布の有意義な表現空間を学習できることを示した。
論文 参考訳(メタデータ) (2024-04-12T07:41:17Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep denoising autoencoder-based non-invasive blood flow detection for
arteriovenous fistula [10.030431512848239]
本稿では,DAE(Deep Denoising Autoencoder)に基づく次元削減と再構成作業を行う手法を提案する。
以上の結果から,DAEが生み出す潜伏表現は0.93の精度で予測を上回った。
ノイズ・ミキシングの導入とノイズ・トゥ・クリーン・スキームの利用により、潜在表現の識別能力が効果的に向上する。
論文 参考訳(メタデータ) (2023-06-12T04:46:01Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
モバイルヘルス(英語: Mobile Health、mHealth)は、ウェアラブルセンサーを使用して、日常生活中の参加者の生理状態を高頻度で監視し、時間的に精度の高い健康介入を可能にする能力である。
豊富な計算文学にもかかわらず、既存の技術は多くのmHealthアプリケーションを構成する脈動信号には効果がない。
このギャップに対処するPulseImputeは、現実的なmHealth欠損モデル、幅広いベースラインセット、臨床関連下流タスクを含む、最初の大規模パルス信号計算チャレンジである。
論文 参考訳(メタデータ) (2022-12-14T21:39:15Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
単一ステントトラッキングのためのエンドツーエンドのディープラーニングフレームワークを提案する。
U-Netベースのランドマーク検出、ResNetベースのステント提案、機能抽出の3つの階層モジュールで構成されている。
実験により,本手法は最先端のポイントベース追跡モデルと比較して,検出精度が有意に向上していることが示された。
論文 参考訳(メタデータ) (2022-07-20T14:20:03Z) - HyperNet: Self-Supervised Hyperspectral Spatial-Spectral Feature
Understanding Network for Hyperspectral Change Detection [19.774857440703038]
HyperNetはピクセルレベルの自己監督型空間スペクトル理解ネットワークである。
有効高スペクトル変化検出のための画素ワイド特徴表現を実現する。
提案したHyperNetの有効性と一般化をテストするために,6つのハイパースペクトルデータセットが採用された。
論文 参考訳(メタデータ) (2022-07-20T03:26:03Z) - Gastrointestinal Polyps and Tumors Detection Based on Multi-scale
Feature-fusion with WCE Sequences [0.0]
本稿では,小腸ポリープと腫瘍を自動的に検出するtextbfTwo-stage textbfMulti-scale textbfFeature-fusion Learning Network(textbfTMFNet)を提案する。
実験では22,335個のWCE画像を用いて,123,092個の病変領域を用いて検出の枠組みを訓練した。
論文 参考訳(メタデータ) (2022-04-03T07:24:50Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
本稿では,周波数帯域を低域から高域に漸進的に洗練するために,IGNetと呼ばれる新しいネットワークアーキテクチャを提案する。
この設計では、より周波数間先行と情報を利用するため、モデルサイズは軽量化でき、競争結果も維持できる。
論文 参考訳(メタデータ) (2021-12-22T10:35:53Z) - Markerless Suture Needle 6D Pose Tracking with Robust Uncertainty
Estimation for Autonomous Minimally Invasive Robotic Surgery [11.530352384883361]
ベイズフィルタを用いたマーカーレス縫合針ポーズトラッキングの新しい手法を提案する。
データ効率の良い特徴点検出器を訓練し、針上の特徴点を抽出する。
新しい観察モデルは、検出と針の予測投影との重なりを計測する。
論文 参考訳(メタデータ) (2021-09-26T23:30:14Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Deep learning for gravitational-wave data analysis: A resampling
white-box approach [62.997667081978825]
我々は、LIGO検出器からの単一干渉計データを用いて、畳み込みニューラルネットワーク(CNN)を用いて、コンパクトなバイナリコレッセンスにおける重力波(GW)信号を検出する。
CNNはノイズを検出するのに非常に正確だが、GW信号のリコールに十分な感度がないため、CNNはGWトリガの生成よりもノイズ低減に適している。
論文 参考訳(メタデータ) (2020-09-09T03:28:57Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。