Visibility-Aware Keypoint Localization for 6DoF Object Pose Estimation
- URL: http://arxiv.org/abs/2403.14559v1
- Date: Thu, 21 Mar 2024 16:59:45 GMT
- Title: Visibility-Aware Keypoint Localization for 6DoF Object Pose Estimation
- Authors: Ruyi Lian, Haibin Ling,
- Abstract summary: Localizing 3D keypoints in a 2D image is an effective way to establish 3D-2D correspondences for 6DoF object pose estimation.
In this paper, we address this issue by localizing the important keypoints in terms of visibility.
We construct VAPO (Visibility-Aware POse estimator) by integrating the visibility-aware importance with a state-of-the-art pose estimation algorithm.
- Score: 56.07676459156789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Localizing predefined 3D keypoints in a 2D image is an effective way to establish 3D-2D correspondences for 6DoF object pose estimation. However, unreliable localization results of invisible keypoints degrade the quality of correspondences. In this paper, we address this issue by localizing the important keypoints in terms of visibility. Since keypoint visibility information is currently missing in dataset collection process, we propose an efficient way to generate binary visibility labels from available object-level annotations, for keypoints of both asymmetric objects and symmetric objects. We further derive real-valued visibility-aware importance from binary labels based on PageRank algorithm. Taking advantage of the flexibility of our visibility-aware importance, we construct VAPO (Visibility-Aware POse estimator) by integrating the visibility-aware importance with a state-of-the-art pose estimation algorithm, along with additional positional encoding. Extensive experiments are conducted on popular pose estimation benchmarks including Linemod, Linemod-Occlusion, and YCB-V. The results show that, VAPO improves both the keypoint correspondences and final estimated poses, and clearly achieves state-of-the-art performances.
Related papers
- PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated,
Noisy, and Decimated Point Cloud Data [17.471342278936365]
We propose a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated.
We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation.
We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches.
arXiv Detail & Related papers (2023-08-10T08:10:01Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
We introduce a novel method, CPPF++, designed for sim-to-real pose estimation.
To address the challenge posed by vote collision, we propose a novel approach that involves modeling the voting uncertainty.
We incorporate several innovative modules, including noisy pair filtering, online alignment optimization, and a feature ensemble.
arXiv Detail & Related papers (2022-11-24T03:27:00Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - 6D Object Pose Estimation using Keypoints and Part Affinity Fields [24.126513851779936]
The task of 6D object pose estimation from RGB images is an important requirement for autonomous service robots to be able to interact with the real world.
We present a two-step pipeline for estimating the 6 DoF translation and orientation of known objects.
arXiv Detail & Related papers (2021-07-05T14:41:19Z) - 3D Point-to-Keypoint Voting Network for 6D Pose Estimation [8.801404171357916]
We propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints.
The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD.
arXiv Detail & Related papers (2020-12-22T11:43:15Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.