論文の概要: Digital Twin for Wind Energy: Latest updates from the NorthWind project
- arxiv url: http://arxiv.org/abs/2403.14646v2
- Date: Tue, 26 Mar 2024 08:47:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:14:52.661632
- Title: Digital Twin for Wind Energy: Latest updates from the NorthWind project
- Title(参考訳): Digital Twin for Wind Energy: NorthWindプロジェクトの最新情報
- Authors: Adil Rasheed, Florian Stadtmann, Eivind Fonn, Mandar Tabib, Vasileios Tsiolakis, Balram Panjwani, Kjetil Andre Johannessen, Trond Kvamsdal, Omer San, John Olav Tande, Idar Barstad, Tore Christiansen, Elling Rishoff, Lars Frøyd, Tore Rasmussen,
- Abstract要約: NorthWindは、風力エネルギーの最先端の研究とイノベーションを推進することを目指している。
デジタルツイン(Digital twins)は、物理資産やプロセスの仮想表現である。
ディジタル双生児はリアルタイムの予測、最適化、監視、制御、情報による意思決定を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: NorthWind, a collaborative research initiative supported by the Research Council of Norway, industry stakeholders, and research partners, aims to advance cutting-edge research and innovation in wind energy. The core mission is to reduce wind power costs and foster sustainable growth, with a key focus on the development of digital twins. A digital twin is a virtual representation of physical assets or processes that uses data and simulators to enable real-time forecasting, optimization, monitoring, control and informed decision-making. Recently, a hierarchical scale ranging from 0 to 5 (0 - Standalone, 1 - Descriptive, 2 - Diagnostic, 3 - Predictive, 4 - Prescriptive, 5 - Autonomous has been introduced within the NorthWind project to assess the capabilities of digital twins. This paper elaborates on our progress in constructing digital twins for wind farms and their components across various capability levels.
- Abstract(参考訳): 北ウィンドはノルウェー研究協議会、産業利害関係者、研究パートナーが支援する共同研究イニシアチブであり、風力エネルギーの最先端の研究と革新を推進することを目的としている。
中心となるミッションは、風力発電のコスト削減と持続的な成長の促進であり、デジタル双生児の開発に重点を置いている。
デジタルツイン(Digital twin)は、データとシミュレーターを使用してリアルタイム予測、最適化、監視、制御、情報意思決定を可能にする物理資産またはプロセスの仮想表現である。
近年,0から5 (0 - Standalone, 1 - Descriptive, 2 - Diagnostic, 3 - Predictive, 4 - Prescriptive, 5 - Autonomous の階層尺度が NorthWind プロジェクト内に導入され,デジタル双生児の能力を評価する。
本稿では,風力発電用デジタルツインの構築の進展と,各種能力レベルにおけるその構成要素について詳述する。
関連論文リスト
- TCNFormer: Temporal Convolutional Network Former for Short-Term Wind Speed Forecasting [9.47727784069628]
本研究は,短期(12時間)の風速予測のための時間的コンテンポラル前駆体 (TCNFormer) を提案する。
以上の結果から,TNFormerは予測精度において最先端モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-27T15:35:42Z) - Efficient Deterministic Renewable Energy Forecasting Guided by Multiple-Location Weather Data [4.048814984274799]
本稿では,複数の発電施設を対象とした風力・太陽光発電予測手法を提案する。
気象及びエネルギー関連時系列の時間的処理にU字型の時間的畳み込み自動エンコーダアーキテクチャを用いる。
5つのデータセットの日平均太陽・風力エネルギー予測シナリオを実験により評価し,提案手法が最上位となることを示した。
論文 参考訳(メタデータ) (2024-04-26T09:30:55Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
デジタル双対とは何かという合意的な定義は存在しない。
我々のデジタルツインプロトタイプ(DTP)アプローチは、組み込みソフトウェアシステムの開発と自動テストにおいて、エンジニアを支援します。
論文 参考訳(メタデータ) (2024-01-15T22:13:48Z) - Enabling Automated Integration Testing of Smart Farming Applications via
Digital Twin Prototypes [49.44419860570116]
産業4.0とスマート農業は密接に関連しており、産業4.0でもスマート農業に使われている技術の多くが使用されている。
デジタルツインは、そのようなアプリケーションのコスト効率の良いソフトウェア開発の可能性を秘めている。
本稿では,ソフトウェアの自動テストにDigital Twin Prototypeアプローチを採用するケーススタディを提案する。
論文 参考訳(メタデータ) (2023-11-09T21:24:12Z) - Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
我々はエネルギー測定、予測、効率評価を含む3倍の研究を行う。
まず、デバイス上での深層学習のエネルギー消費特性を明らかにするための、第1級の詳細な測定結果を示す。
第2に、カーネルレベルのエネルギーデータセットに基づいて、エッジデバイスのための最初のカーネルレベルのエネルギー予測器を設計、実装する。
論文 参考訳(メタデータ) (2023-10-19T23:55:00Z) - Digital Twins in Wind Energy: Emerging Technologies and
Industry-Informed Future Directions [75.81393574964038]
本稿では、風力エネルギー産業におけるデジタルツイン技術とその能力レベルについて概観する。
デジタルツインの定義と能力レベルを0-5; 0-スタンドアロン、1-記述型、2-診断型、3-予測型、4-予測型、5-自律型から統合する。
論文 参考訳(メタデータ) (2023-04-16T18:38:28Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
エンコーダ・デコーダ構造に基づく深層学習手法を開発した。
本モデルでは,風力タービンが発生した風力を,他のタービンと比較して空間的位置と過去の風速データを用いて予測する。
論文 参考訳(メタデータ) (2021-09-29T16:26:10Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
この研究は、様々なDT機能と現在のアプローチ、デジタルツインの実装と導入の遅れの背景にある欠点と理由を探求する。
この遅延の主な理由は、普遍的な参照フレームワークの欠如、ドメイン依存、共有データのセキュリティ上の懸念、デジタルツインの他の技術への依存、定量的メトリクスの欠如である。
論文 参考訳(メタデータ) (2020-11-02T19:08:49Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。