Stabilizing Quantum Simulators Of Gauge Theories Against $1/f$ Noise
- URL: http://arxiv.org/abs/2403.14656v1
- Date: Mon, 26 Feb 2024 18:37:35 GMT
- Title: Stabilizing Quantum Simulators Of Gauge Theories Against $1/f$ Noise
- Authors: Bhavik Kumar,
- Abstract summary: This thesis investigates the application of quantum simulation in the ongoing "second" quantum revolution.
Gauge theories are of particular interest in modern quantum simulators as they offer a new probe of high-energy physics on low-energy tabletop devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates the application of quantum simulation in the ongoing "second" quantum revolution, which employs various synthetic quantum matter platforms, such as ultracold atoms in optical lattices, Rydberg atoms, and superconducting qubits, to realize exotic condensed matter and particle physics phenomena with high precision and control. Gauge theories are of particular interest in modern quantum simulators as they offer a new probe of high-energy physics on low-energy tabletop devices. However, to accurately model gauge-theory phenomena on a quantum simulator, stabilizing the underlying gauge symmetry is crucial. Through this thesis we demonstrate that a recently developed experimentally feasible scheme based on linear gauge protection, initially devised to protect against coherent gauge breaking errors, can also be used to suppress incoherent errors arising from $1/f^{\beta}$ noise prominent in various quantum simulation platforms. The Bloch-Redfield formalism is introduced to model gauge violations arising due to these incoherent errors given the noise power spectrum of the environment. The efficacy of linear gauge protection in stabilizing salient features of gauge theories in quantum simulators, such as gauge invariance and exotic far from equilibrium phenomenon focusing on disorder-free localization, and quantum many-body scars against $1/f^{\beta}$ noise sources, is illustrated. These results are immediately applicable in modern analog quantum simulators and digital NISQ devices, paving the way for further development in the field of quantum simulation of lattice gauge theories.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Ising Meson Spectroscopy on a Noisy Digital Quantum Simulator [0.0]
We show that existing noisy quantum machines can be used to analyze the energy spectrum of strongly-interacting 1+1D QFTs.
We perform quench experiments on IBM's ibmq_mumbai quantum simulator to compute the energy spectrum of 1+1D quantum Ising model.
arXiv Detail & Related papers (2023-03-06T17:31:30Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Stabilizing Gauge Theories in Quantum Simulators: A Brief Review [0.0]
Implementation of gauge theories on modern quantum simulators is appealing due to three main reasons.
It offers a new probe of high-energy physics on low-energy tabletop devices.
It serves as a banner of experimental benchmarking.
In order to faithfully model gauge-theory phenomena on a quantum simulator, stabilizing the underlying gauge symmetry is essential.
arXiv Detail & Related papers (2022-04-28T18:00:01Z) - Dynamical quantum phase transitions in a noisy lattice gauge theory [0.0]
This paper studies the dynamics subject to noise of a $ (1+1)$D U$(1)$ quantum link model following a quench of the sign of the mass term.
We find that not only is the system capable of handling noise at rates realistic in NISQ-era devices, but the effect of noise can be understood in terms of simple models.
arXiv Detail & Related papers (2022-03-21T12:44:57Z) - Scattering of mesons in quantum simulators [0.0]
Cold-atom platforms stand as promising candidates to realize quantum simulations of non-perturbative phenomena in gauge theories.
We demonstrate that present-day quantum simulators can imitate linear particle accelerators, giving access to S-matrix measurements of elastic and inelastic meson collisions.
arXiv Detail & Related papers (2020-11-20T19:00:04Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.