A2CI: A Cloud-based, Service-oriented Geospatial Cyberinfrastructure to Support Atmospheric Research
- URL: http://arxiv.org/abs/2403.14693v1
- Date: Fri, 15 Mar 2024 08:28:38 GMT
- Title: A2CI: A Cloud-based, Service-oriented Geospatial Cyberinfrastructure to Support Atmospheric Research
- Authors: Wenwen Li, Hu Shao, Sizhe Wang, Xiran Zhou, Sheng Wu,
- Abstract summary: This paper reports the outcomes of an NSF-funded project that developed a geospatial cyberinfrastructure to support atmospheric research.
We first introduce the service-oriented system framework then describe in detail the implementation of the data discovery module, data management module, data integration module, data analysis and visualization modules following the cloud computing principles.
- Score: 5.706655778525718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Big earth science data offers the scientific community great opportunities. Many more studies at large-scales, over long-terms and at high resolution can now be conducted using the rich information collected by remote sensing satellites, ground-based sensor networks, and even social media input. However, the hundreds of terabytes of information collected and compiled on an hourly basis by NASA and other government agencies present a significant challenge for atmospheric scientists seeking to improve the understanding of the Earth atmospheric system. These challenges include effective discovery, organization, analysis and visualization of large amounts of data. This paper reports the outcomes of an NSF-funded project that developed a geospatial cyberinfrastructure -- the A2CI (Atmospheric Analysis Cyberinfrastructure) -- to support atmospheric research. We first introduce the service-oriented system framework then describe in detail the implementation of the data discovery module, data management module, data integration module, data analysis and visualization modules following the cloud computing principles-Data-as-a-Service, Software-as-a-Service, Platform-as-a-Service and Infrastructure-as-a-Service. We demonstrate the graphic user interface by performing an analysis between Sea Surface Temperature and the intensity of tropical storms in the North Atlantic and Pacific oceans. We expect this work to contribute to the technical advancement of cyberinfrastructure research as well as to the development of an online, collaborative scientific analysis system for atmospheric science.
Related papers
- Foundation Models for Spatio-Temporal Data Science: A Tutorial and Survey [69.0648659029394]
Spatio-Temporal (ST) data science is fundamental to understanding complex systems in domains such as urban computing, climate science, and intelligent transportation.
Researchers have begun exploring the concept of Spatio-Temporal Foundation Models (STFMs) to enhance adaptability and generalization across diverse ST tasks.
STFMs empower the entire workflow of ST data science, ranging from data sensing, management, to mining, thereby offering a more holistic and scalable approach.
arXiv Detail & Related papers (2025-03-12T09:42:18Z) - Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion [33.025831091005784]
Large-scale Sea Surface Temperature (SST) monitoring relies on satellite infrared radiation detection.
Cloud cover presents a major challenge, creating extensive observational gaps.
We employ deep neural networks to reconstruct cloud-covered portions of satellite imagery.
arXiv Detail & Related papers (2024-12-04T15:49:49Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Data Science for Geographic Information Systems [0.0]
The integration of data science into Geographic Information Systems has facilitated the evolution of these tools into complete spatial analysis platforms.
The adoption of machine learning and big data techniques has equipped these platforms with the capacity to handle larger amounts of increasingly complex data.
This work traces the historical and technical evolution of data science and GIS as fields of study, highlighting the critical points of convergence between domains.
arXiv Detail & Related papers (2024-04-04T18:50:58Z) - Foundation Models for Weather and Climate Data Understanding: A
Comprehensive Survey [39.08108001903514]
We offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data.
Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model, model scopes and applications, and datasets for weather and climate.
arXiv Detail & Related papers (2023-12-05T01:10:54Z) - Linking the Dynamic PicoProbe Analytical Electron-Optical Beam Line /
Microscope to Supercomputers [39.52789559084336]
Dynamic PicoProbe at Argonne National Laboratory is undergoing upgrades that will enable it to produce up to 100s of GB of data per day.
While this data is highly important for both fundamental science and industrial applications, there is currently limited on-site infrastructure to handle these high-volume data streams.
We address this problem by providing a software architecture capable of supporting neighboring large-scale data transfers to neighboring supercomputers at the Argonne Leadership Computing Facility.
This infrastructure supports expected workloads and also provides domain scientists the ability to reinterrogate data from past experiments to yield additional scientific value and derive new insights.
arXiv Detail & Related papers (2023-08-25T23:07:58Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - A Data Cube of Big Satellite Image Time-Series for Agriculture
Monitoring [0.0]
The modernization of the Common Agricultural Policy (CAP) requires the large scale and frequent monitoring of agricultural land.
We present the Agriculture monitoring Data Cube (ADC), which is an automated, modular, end-to-end framework for discovering, pre-processing and indexing optical and Synthetic Aperture Radar (SAR) images into a multidimensional cube.
We also offer a set of powerful tools on top of the ADC, including i) the generation of analysis-ready feature spaces of big satellite data to feed downstream machine learning tasks and ii) the support of Satellite Image Time-Series (SITS) analysis via services pertinent to the monitoring
arXiv Detail & Related papers (2022-05-16T15:26:23Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
Geosystems are geological formations altered by humans activities such as fossil energy exploration, waste disposal, geologic carbon sequestration, and renewable energy generation.
The responsible use and exploration of geosystems are thus critical to the geosystem governance, which in turn depends on the efficient monitoring, risk assessment, and decision support tools for practical implementation.
Fast advances in machine learning algorithms and novel sensing technologies in recent years have presented new opportunities for the subsurface research community to improve the efficacy and transparency of geosystem governance.
arXiv Detail & Related papers (2021-04-10T13:40:22Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - Cloud technologies as a tool of creating Earth Remote Sensing
educational resources [0.0]
The article analyzes the main sources of ERS as a basis for educational resources formation with aerospace images.
The article presents an example of such a database, covering more than 800 aerospace images and dynamic models.
arXiv Detail & Related papers (2020-07-21T13:16:44Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.