論文の概要: Human-in-the-Loop AI for Cheating Ring Detection
- arxiv url: http://arxiv.org/abs/2403.14711v1
- Date: Mon, 18 Mar 2024 13:25:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:31:40.889464
- Title: Human-in-the-Loop AI for Cheating Ring Detection
- Title(参考訳): リング検出のための対人AI
- Authors: Yong-Siang Shih, Manqian Liao, Ruidong Liu, Mirza Basim Baig,
- Abstract要約: 本稿では,これらの不正行為を検知し,抑えるように設計された,ループ内AI不正行為検出システムを提案する。
このシステムはResponsible AI(RAI)標準に準拠しており、倫理的配慮が開発プロセス全体を通して統合されることを保証する。
- 参考スコア(独自算出の注目度): 0.21874189959020424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online exams have become popular in recent years due to their accessibility. However, some concerns have been raised about the security of the online exams, particularly in the context of professional cheating services aiding malicious test takers in passing exams, forming so-called "cheating rings". In this paper, we introduce a human-in-the-loop AI cheating ring detection system designed to detect and deter these cheating rings. We outline the underlying logic of this human-in-the-loop AI system, exploring its design principles tailored to achieve its objectives of detecting cheaters. Moreover, we illustrate the methodologies used to evaluate its performance and fairness, aiming to mitigate the unintended risks associated with the AI system. The design and development of the system adhere to Responsible AI (RAI) standards, ensuring that ethical considerations are integrated throughout the entire development process.
- Abstract(参考訳): 近年,アクセシビリティのため,オンライン試験が普及している。
しかし、オンライン試験の安全性、特に悪質な試験受験者が合格するのを助けるプロの不正行為の文脈において、いくつかの懸念が持ち上がっており、いわゆる「チーティングリング」を形成している。
本稿では,これらの不正なリングを検知し,阻止するように設計された,ループ型AI不正なリング検出システムを提案する。
我々は、この人間のループAIシステムの基盤となる論理を概説し、不正者検出の目的を達成するための設計原則を探求する。
さらに、AIシステムに関連する意図しないリスクを軽減することを目的として、その性能と公平性を評価するために使用される方法論について説明する。
システムの設計と開発はResponsible AI(RAI)標準に準拠し、開発プロセス全体を通して倫理的考察が統合されることを保証する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - The Invisible Game on the Internet: A Case Study of Decoding Deceptive Patterns [19.55209153462331]
認知パターンは、ユーザーを操作するためのデジタルプラットフォームに埋め込まれたデザインプラクティスである。
検出ツールの進歩にもかかわらず、偽りのパターンのリスクを評価する際に大きなギャップが存在する。
論文 参考訳(メタデータ) (2024-02-05T22:42:59Z) - AI Deception: A Survey of Examples, Risks, and Potential Solutions [20.84424818447696]
本稿は、現在のAIシステムが人間を騙す方法を学んだことを論じる。
我々は虚偽を、真理以外の結果の追求において、虚偽の信念を体系的に誘導するものとして定義する。
論文 参考訳(メタデータ) (2023-08-28T17:59:35Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Robustness testing of AI systems: A case study for traffic sign
recognition [13.395753930904108]
本稿では,AIシステムのロバスト性を実際に検討し,どの手法やメトリクスを利用できるかを示す。
自律運転における交通標識認識の例について,ロバストネステスト手法を解説し,分析した。
論文 参考訳(メタデータ) (2021-08-13T10:29:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - ECCOLA -- a Method for Implementing Ethically Aligned AI Systems [11.31664099885664]
本稿では,AI倫理を実践する手法を提案する。
この手法であるECCOLAは循環行動設計研究手法を用いて反復的に開発されている。
論文 参考訳(メタデータ) (2020-04-17T17:57:07Z) - Trustworthy AI in the Age of Pervasive Computing and Big Data [22.92621391190282]
我々は倫理的観点から信頼に値するAIシステムの要件を定式化する。
研究状況と残りの課題について議論した後、スマートシティにおける具体的なユースケースがこれらの方法のメリットを如何に示すかを示す。
論文 参考訳(メタデータ) (2020-01-30T08:09:31Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。