Learning WENO for entropy stable schemes to solve conservation laws
- URL: http://arxiv.org/abs/2403.14848v2
- Date: Tue, 03 Jun 2025 15:59:58 GMT
- Title: Learning WENO for entropy stable schemes to solve conservation laws
- Authors: Philip Charles, Deep Ray,
- Abstract summary: TeCNO schemes form a class of arbitrary high-order entropy stable finite difference solvers.<n>Third-order weighted essentially non-oscillatory (WENO) schemes have been designed to satisfy the sign property.<n>We propose a variant of the SP-WENO, termed as Deep SignPreserving WENO (DSPWENO), where a neural network is trained to learn the WENO weighting strategy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entropy conditions play a crucial role in the extraction of a physically relevant solution for systems of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Third-order weighted essentially non-oscillatory (WENO) schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.
Related papers
- Conservative approximation-based feedforward neural network for WENO schemes [4.867849275247251]
We present the feedforward neural network based on the conservative approximation to the derivative from point values.<n>We present WENO3-CADNNs, where they outperform WENO3-Z and achieve accuracy comparable to WENO5-JS.
arXiv Detail & Related papers (2025-07-08T17:19:48Z) - Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective [14.65008276932511]
Physics-informed neural networks (PINNs) are extensively employed to solve partial differential equations (PDEs)<n>PINNs are typically optimized using a finite set of points, which poses significant challenges in guaranteeing their convergence and accuracy.<n>We propose a new weighting scheme that will adaptively change the weights to the loss functions from isolated points to their continuous neighborhood regions.
arXiv Detail & Related papers (2025-06-24T17:13:51Z) - Distribution free uncertainty quantification in neuroscience-inspired deep operators [1.8416014644193066]
Energy-efficient deep learning algorithms are essential for a sustainable future and feasible edge computing setups.
In this paper, we introduce the Conformalized Randomized Prior Operator (CRP-O) framework to quantify uncertainty in both conventional and spiking neural operators.
We show that the conformalized RP-VSWNO significantly enhance UQ estimates compared to vanilla RP-VSWNO, Quantile WNO (Q-WNO), and Conformalized Quantile WNO (CQ-WNO)
arXiv Detail & Related papers (2024-12-12T15:37:02Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - A Neural Network-Based Enrichment of Reproducing Kernel Approximation
for Modeling Brittle Fracture [0.0]
An improved version of the neural network-enhanced Reproducing Kernel Particle Method (NN-RKPM) is proposed for modeling brittle fracture.
The effectiveness of the proposed method is demonstrated by a series of numerical examples involving damage propagation and branching.
arXiv Detail & Related papers (2023-07-04T21:52:09Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities [0.0]
This strategy can be used to efficiently train neural network surrogate models of partial differential equations.
The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system.
We show NBM is competitive in terms of memory and training speed with other PINN-type frameworks.
arXiv Detail & Related papers (2022-10-25T20:13:26Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
We propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solution for partial differential equations (PDEs)
The proposed approach combines admissible NURBS parametrizations required to define the physical domain and the Dirichlet boundary conditions with a PINN solver.
arXiv Detail & Related papers (2022-10-25T10:35:45Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNet is a reinforcement learning framework to discover resilient network topologies against various disasters and attacks.
We show that ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.
arXiv Detail & Related papers (2021-10-18T06:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.