論文の概要: VidLA: Video-Language Alignment at Scale
- arxiv url: http://arxiv.org/abs/2403.14870v1
- Date: Thu, 21 Mar 2024 22:36:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:57:02.160210
- Title: VidLA: Video-Language Alignment at Scale
- Title(参考訳): VidLA: 大規模ビデオ言語アライメント
- Authors: Mamshad Nayeem Rizve, Fan Fei, Jayakrishnan Unnikrishnan, Son Tran, Benjamin Z. Yao, Belinda Zeng, Mubarak Shah, Trishul Chilimbi,
- Abstract要約: 大規模なビデオ言語アライメントのためのアプローチであるVidLAを提案する。
提案手法は,複数の検索ベンチマークにおける最先端手法を超越した手法である。
- 参考スコア(独自算出の注目度): 48.665918882615195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
- Abstract(参考訳): 本稿では,大規模なビデオ言語アライメントのためのアプローチであるVidLAを提案する。
従来のビデオ言語アライメントアプローチには2つの大きな制限がある。
まず、短い範囲と長い範囲の時間的依存関係をキャプチャせず、通常、既存のトレーニング済みイメージテキスト基盤モデルとの統合が難しい複雑な階層的なディープネットワークアーキテクチャを使用する。
この制限を効果的に解決するために、ネットワークアーキテクチャをシンプルに保ち、ビデオの時間的階層的な性質を考慮し、異なる時間的解像度で動作する一連のデータトークンを使用する。
単純な2towerアーキテクチャを用いることで、事前訓練された画像テキスト基盤モデルでビデオ言語モデルの初期化が可能になり、最終的なパフォーマンスが向上する。
第二に、既存のビデオ言語アライメントは、意味的に整合した大規模なトレーニングデータがないために困難である。
そのために、最近のLCMを活用して、これまでで最大のビデオ言語データセットを、より優れたビジュアルグラウンドでキュレートする。
さらに、短いクリップしか含まない既存のビデオテキストデータセットとは異なり、我々のデータセットは、時間的な階層的なデータトークンが時間的なスケールでより良い表現を抽出するのを助けるために、様々な期間の動画クリップが豊富である。
実験の結果,提案手法は,複数の検索ベンチマーク,特に長編ビデオにおいて最先端の手法を超越し,分類ベンチマークにおいて競争力を発揮することがわかった。
関連論文リスト
- Training-free Video Temporal Grounding using Large-scale Pre-trained Models [41.71055776623368]
ビデオの時間的グラウンドは、与えられた自然言語クエリに最も関係のある、トリミングされていないビデオ内のビデオセグメントを特定することを目的としている。
既存のビデオ時間的ローカライゼーションモデルは、トレーニングのために特定のデータセットに依存しており、データ収集コストが高い。
本研究では,事前学習型大規模モデルの能力を活用したトレーニングフリービデオ時間グラウンド手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T02:25:12Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - UnLoc: A Unified Framework for Video Localization Tasks [82.59118972890262]
UnLocは、未トリミングビデオにおける時間的ローカライズのための新しいアプローチである。
事前訓練された画像とテキストタワーを使用し、トークンをビデオテキスト融合モデルに供給する。
我々は,3つの異なるローカライゼーションタスクに対して,統一的なアプローチで成果を達成している。
論文 参考訳(メタデータ) (2023-08-21T22:15:20Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVLは階層的なビデオ言語埋め込みであり、長期および短期の関連を同時に扱う。
クリップレベルとビデオレベルの両方でテキストと視覚のアライメントを促進する階層的なコントラストトレーニングの目標を導入する。
我々の階層的スキームは、SotAを達成した長期的なビデオ表現と同様に、その単一レベルよりも優れたクリップ表現をもたらす。
論文 参考訳(メタデータ) (2023-01-05T21:53:19Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
大規模ビデオ言語事前学習では、ビデオ言語理解タスクが大幅に改善されている。
我々は、VILA(Long-Form VIdeo-LAnguage Pre-Training Model)を導入し、大規模な長文ビデオおよび段落データセットでトレーニングする。
我々は、7つの下流の長文ビデオ言語理解タスクでモデルを微調整し、新しい最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-12T09:08:27Z) - CLIP2Video: Mastering Video-Text Retrieval via Image CLIP [13.270902407320005]
本稿では、CLIP2Videoネットワークを用いて、画像言語学習モデルをエンドツーエンドでビデオテキスト検索に転送する。
我々は,テキスト・ツー・ビデオ・トゥ・テキスト・検索ベンチマークにおいて,徹底的なアブレーション研究を行い,最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-06-21T13:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。