Image Classification with Rotation-Invariant Variational Quantum Circuits
- URL: http://arxiv.org/abs/2403.15031v1
- Date: Fri, 22 Mar 2024 08:26:31 GMT
- Title: Image Classification with Rotation-Invariant Variational Quantum Circuits
- Authors: Paul San Sebastian, Mikel Cañizo, Román Orús,
- Abstract summary: Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices.
One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters.
Adding inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices. One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters. Adding geometric inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning. In this work, an equivariant architecture for variational quantum classifiers is introduced to create a label-invariant model for image classification with $C_4$ rotational label symmetry. The equivariant circuit is benchmarked against two different architectures, and it is experimentally observed that the geometric approach boosts the model's performance. Finally, a classical equivariant convolution operation is proposed to extend the quantum model for the processing of larger images, employing the resources available in NISQ devices.
Related papers
- Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Variational post-selection for ground states and thermal states
simulation [1.9336815376402718]
Variational quantum algorithms (VQAs) are one of the most promising routes in the noisy intermediate-scale quantum (NISQ) era.
We propose a framework to enhance the expressiveness of variational quantum ansatz by incorporating variational post-selection techniques.
arXiv Detail & Related papers (2024-02-12T12:16:17Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
This work proposes equivariant Quantum Convolutional Neural Networks (EquivQCNNs) for image classification under planar $p4m$ symmetry.
We present the results tested in different use cases, such as phase detection of the 2D Ising model and classification of the extended MNIST dataset.
arXiv Detail & Related papers (2023-10-03T18:01:02Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Exploiting symmetry in variational quantum machine learning [0.5541644538483947]
Variational quantum machine learning is an extensively studied application of near-term quantum computers.
We show how a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem at hand.
We benchmark the proposed methods on two toy problems that feature a non-trivial symmetry and observe a substantial increase in generalization performance.
arXiv Detail & Related papers (2022-05-12T17:01:41Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Benchmarking variational quantum eigensolvers for the
square-octagon-lattice Kitaev model [3.6810704401578724]
Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of scientific interest.
The variational quantum eigensolver (VQE) is a promising approach to finding energy eigenvalues on noisy quantum computers.
We demonstrate the implementation of HVA circuits on Rigetti's Aspen-9 chip with error mitigation.
arXiv Detail & Related papers (2021-08-30T16:58:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.