Language Models in Dialogue: Conversational Maxims for Human-AI Interactions
- URL: http://arxiv.org/abs/2403.15115v2
- Date: Sat, 22 Jun 2024 12:17:38 GMT
- Title: Language Models in Dialogue: Conversational Maxims for Human-AI Interactions
- Authors: Erik Miehling, Manish Nagireddy, Prasanna Sattigeri, Elizabeth M. Daly, David Piorkowski, John T. Richards,
- Abstract summary: We propose a set of maxims -- quantity, quality, relevance, manner, benevolence, and transparency -- for describing effective human-AI conversation.
We evaluate the degree to which various language models are able to understand these maxims and find that models possess an internal prioritization of principles that can significantly impact their ability to interpret the maxims accurately.
- Score: 14.312321347152249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern language models, while sophisticated, exhibit some inherent shortcomings, particularly in conversational settings. We claim that many of the observed shortcomings can be attributed to violation of one or more conversational principles. By drawing upon extensive research from both the social science and AI communities, we propose a set of maxims -- quantity, quality, relevance, manner, benevolence, and transparency -- for describing effective human-AI conversation. We first justify the applicability of the first four maxims (from Grice) in the context of human-AI interactions. We then argue that two new maxims, benevolence (concerning the generation of, and engagement with, harmful content) and transparency (concerning recognition of one's knowledge boundaries, operational constraints, and intents), are necessary for addressing behavior unique to modern human-AI interactions. We evaluate the degree to which various language models are able to understand these maxims and find that models possess an internal prioritization of principles that can significantly impact their ability to interpret the maxims accurately.
Related papers
- Aligning Spoken Dialogue Models from User Interactions [55.192134724622235]
We propose a novel preference alignment framework to improve spoken dialogue models on realtime conversations from user interactions.<n>We create a dataset of more than 150,000 preference pairs from raw multi-turn speech conversations annotated with AI feedback.<n>Our findings shed light on the importance of a well-calibrated balance among various dynamics, crucial for natural real-time speech dialogue systems.
arXiv Detail & Related papers (2025-06-26T16:45:20Z) - What Makes a Good Natural Language Prompt? [72.3282960118995]
We conduct a meta-analysis surveying more than 150 prompting-related papers from leading NLP and AI conferences from 2022 to 2025.<n>We propose a property- and human-centric framework for evaluating prompt quality, encompassing 21 properties categorized into six dimensions.<n>We then empirically explore multi-property prompt enhancements in reasoning tasks, observing that single-property enhancements often have the greatest impact.
arXiv Detail & Related papers (2025-06-07T23:19:27Z) - Conversational Alignment with Artificial Intelligence in Context [0.0]
This article explores what it means for AI agents to be conversationally aligned to human communicative norms and practices.<n>We suggest that current large language model (LLM) architectures, constraints, and affordances may impose fundamental limitations on achieving full conversational alignment.
arXiv Detail & Related papers (2025-05-28T22:14:34Z) - Human-Aligned Bench: Fine-Grained Assessment of Reasoning Ability in MLLMs vs. Humans [9.315735862658244]
We propose Human-Aligned Bench, a benchmark for alignment of multimodal reasoning with human performance.<n>We collected 9,794 multimodal questions that solely rely on contextual reasoning, including bilingual (Chinese and English) multimodal questions and pure text-based questions.<n>Extensive experiments on the Human-Aligned Bench reveal notable differences between the performance of current MLLMs in multimodal reasoning and human performance.
arXiv Detail & Related papers (2025-05-16T11:41:19Z) - Deterministic AI Agent Personality Expression through Standard Psychological Diagnostics [0.0]
We show that AI models can express deterministic and consistent personalities when instructed using established psychological frameworks.
More advanced models like GPT-4o and o1 demonstrate the highest accuracy in expressing specified personalities.
These findings establish a foundation for creating AI agents with diverse and consistent personalities.
arXiv Detail & Related papers (2025-03-21T12:12:05Z) - Enhancing Human-Like Responses in Large Language Models [0.0]
We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems.
The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns.
arXiv Detail & Related papers (2025-01-09T07:44:06Z) - Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models [2.5200794639628032]
This research develops advanced methodologies for Large Language Models (LLMs) to better manage linguistic behaviors related to emotions and ethics.
We introduce DIKE, an adversarial framework that enhances the LLMs' ability to internalize and reflect global human values.
arXiv Detail & Related papers (2024-05-11T19:26:00Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
Policy Learning with a Language Bottleneck (PLLBB) is a framework enabling AI agents to generate linguistic rules.
PLLBB alternates between a rule generation step guided by language models, and an update step where agents learn new policies guided by rules.
In a two-player communication game, a maze solving task, and two image reconstruction tasks, we show thatPLLBB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users.
arXiv Detail & Related papers (2024-05-07T08:40:21Z) - Are Human Conversations Special? A Large Language Model Perspective [8.623471682333964]
This study analyzes changes in the attention mechanisms of large language models (LLMs) when used to understand natural conversations between humans (human-human)
Our findings reveal that while language models exhibit domain-specific attention behaviors, there is a significant gap in their ability to specialize in human conversations.
arXiv Detail & Related papers (2024-03-08T04:44:25Z) - Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties [68.66719970507273]
Value pluralism is the view that multiple correct values may be held in tension with one another.
As statistical learners, AI systems fit to averages by default, washing out potentially irreducible value conflicts.
We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations.
arXiv Detail & Related papers (2023-09-02T01:24:59Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
Emergent communication (Emecom) is a field of research aiming to develop artificial agents capable of using natural language.
In this review, we delineate all the common proprieties we find across the literature and how they relate to human interactions.
We identify two subcategories and highlight their characteristics and open challenges.
arXiv Detail & Related papers (2023-08-01T14:43:10Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
Recent AI-assistant agents, such as ChatGPT, rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback to align the output with human intentions.
This dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision.
We propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision.
arXiv Detail & Related papers (2023-05-04T17:59:28Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
We investigate the effectiveness of natural language interventions for reading-comprehension systems.
We propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) model's unethical behavior.
arXiv Detail & Related papers (2021-06-02T20:57:58Z) - Retrieval Augmentation Reduces Hallucination in Conversation [49.35235945543833]
We explore the use of neural-retrieval-in-the-loop architectures for knowledge-grounded dialogue.
We show that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks.
arXiv Detail & Related papers (2021-04-15T16:24:43Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.