Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models
- URL: http://arxiv.org/abs/2405.07076v2
- Date: Tue, 14 May 2024 03:08:12 GMT
- Title: Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models
- Authors: Edward Y. Chang,
- Abstract summary: This research develops advanced methodologies for Large Language Models (LLMs) to better manage linguistic behaviors related to emotions and ethics.
We introduce DIKE, an adversarial framework that enhances the LLMs' ability to internalize and reflect global human values.
- Score: 2.5200794639628032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research develops advanced methodologies for Large Language Models (LLMs) to better manage linguistic behaviors related to emotions and ethics. We introduce DIKE, an adversarial framework that enhances the LLMs' ability to internalize and reflect global human values, adapting to varied cultural contexts to promote transparency and trust among users. The methodology involves detailed modeling of emotions, classification of linguistic behaviors, and implementation of ethical guardrails. Our innovative approaches include mapping emotions and behaviors using self-supervised learning techniques, refining these guardrails through adversarial reviews, and systematically adjusting outputs to ensure ethical alignment. This framework establishes a robust foundation for AI systems to operate with ethical integrity and cultural sensitivity, paving the way for more responsible and context-aware AI interactions.
Related papers
- A Three-Branch Checks-and-Balances Frameworkfor Context-Aware Ethical Alignment of Large Language Models [2.5200794639628032]
This paper introduces a three-branch checks-and-balances framework for ethical alignment of Large Language Models (LLMs)
It implements three independent yet interacting components: LLMs as the executive branch for knowledge generation, DIKE as the legislative branch establishing ethical guardrails, and ERIS as the judicial branch for contextual interpretation.
arXiv Detail & Related papers (2025-01-31T19:41:28Z) - Toward Cultural Interpretability: A Linguistic Anthropological Framework for Describing and Evaluating Large Language Models (LLMs) [13.71024600466761]
This article proposes a new integration of linguistic anthropology and machine learning (ML)
We show the theoretical feasibility of a new, conjoint field of inquiry, cultural interpretability (CI)
CI emphasizes how the dynamic relationship between language and culture makes contextually sensitive, open-ended conversation possible.
arXiv Detail & Related papers (2024-11-07T22:01:50Z) - Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity [0.0]
Large Language Models (LLMs) are increasingly sophisticated and ubiquitous in natural language processing (NLP) applications.
This paper presents a novel framework for contextual grounding in textual models, with a particular emphasis on the Context Representation stage.
Our findings have significant implications for the deployment of LLMs in sensitive domains such as healthcare, legal systems, and social services.
arXiv Detail & Related papers (2024-08-07T18:12:02Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
Policy Learning with a Language Bottleneck (PLLBB) is a framework enabling AI agents to generate linguistic rules.
PLLBB alternates between a rule generation step guided by language models, and an update step where agents learn new policies guided by rules.
In a two-player communication game, a maze solving task, and two image reconstruction tasks, we show thatPLLBB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users.
arXiv Detail & Related papers (2024-05-07T08:40:21Z) - Modeling Emotions and Ethics with Large Language Models [2.5200794639628032]
We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions.
Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback.
arXiv Detail & Related papers (2024-04-15T05:30:26Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.
We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - White Paper: The Generative Education (GenEd) Framework [0.0]
The Generative Education (GenEd) Framework explores the transition from Large Language Models (LLMs) to Large Multimodal Models (LMMs) in education.
This paper delves into the potential of LMMs to create personalized, interactive, and emotionally-aware learning environments.
arXiv Detail & Related papers (2023-10-16T23:30:42Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
We investigate the effectiveness of natural language interventions for reading-comprehension systems.
We propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) model's unethical behavior.
arXiv Detail & Related papers (2021-06-02T20:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.