論文の概要: Infrastructure-Assisted Collaborative Perception in Automated Valet Parking: A Safety Perspective
- arxiv url: http://arxiv.org/abs/2403.15156v1
- Date: Fri, 22 Mar 2024 12:11:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:38:51.116825
- Title: Infrastructure-Assisted Collaborative Perception in Automated Valet Parking: A Safety Perspective
- Title(参考訳): 自動バレットパーキングにおけるインフラ支援協調認識:安全の観点から
- Authors: Yukuan Jia, Jiawen Zhang, Shimeng Lu, Baokang Fan, Ruiqing Mao, Sheng Zhou, Zhisheng Niu,
- Abstract要約: 協調知覚は、連結車両の視野を広げるために適用することができる。
インフラ支援型AVPシステムのためのBEV機能に基づくCPネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 11.405406875019175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Environmental perception in Automated Valet Parking (AVP) has been a challenging task due to severe occlusions in parking garages. Although Collaborative Perception (CP) can be applied to broaden the field of view of connected vehicles, the limited bandwidth of vehicular communications restricts its application. In this work, we propose a BEV feature-based CP network architecture for infrastructure-assisted AVP systems. The model takes the roadside camera and LiDAR as optional inputs and adaptively fuses them with onboard sensors in a unified BEV representation. Autoencoder and downsampling are applied for channel-wise and spatial-wise dimension reduction, while sparsification and quantization further compress the feature map with little loss in data precision. Combining these techniques, the size of a BEV feature map is effectively compressed to fit in the feasible data rate of the NR-V2X network. With the synthetic AVP dataset, we observe that CP can effectively increase perception performance, especially for pedestrians. Moreover, the advantage of infrastructure-assisted CP is demonstrated in two typical safety-critical scenarios in the AVP setting, increasing the maximum safe cruising speed by up to 3m/s in both scenarios.
- Abstract(参考訳): AVP(Automated Valet Parking)における環境認識は、駐車場における厳しい閉塞のために困難な課題となっている。
コラボレーティブ・パーセプション(CP)は、連結車両の視野を広げるために応用できるが、車両通信の帯域幅は限られている。
本研究では,インフラ支援型AVPシステムのためのBEV機能に基づくCPネットワークアーキテクチャを提案する。
このモデルでは、路面カメラとLiDARをオプション入力とし、搭載されているセンサーを統一されたBEV表現で適応的に融合させる。
オートエンコーダとダウンサンプリングは、チャネルワイドおよび空間ワイド次元の縮小に応用され、スパース化と量子化は、データ精度をほとんど損なわない特徴写像をさらに圧縮する。
これらの手法を組み合わせることで、BEV特徴マップのサイズを効果的に圧縮し、NR-V2Xネットワークの実現可能なデータレートに適合させる。
合成AVPデータセットを用いて、CPは特に歩行者の知覚性能を効果的に向上させることができることを観察する。
さらに、AVP設定における2つの典型的な安全クリティカルなシナリオにおいて、インフラ支援CPの利点が示され、両方のシナリオで最大3m/sの安全巡航速度が向上する。
関連論文リスト
- LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation [16.465037559349323]
LET-VIC(LDAR-based End-to-End Tracking framework for Vehicle-Temporal Cooperation)を紹介する。
LET-VICはV2X通信を利用して、車両とインフラの両方のセンサーから空間データと時間データを融合することで、時間知覚を高める。
V2X-Seq-SPDデータセットの実験では、LET-VICはベースラインモデルよりも優れており、少なくともmAPが13.7%、AMOTAが13.1%改善している。
論文 参考訳(メタデータ) (2024-11-22T13:34:29Z) - Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication [0.24466725954625887]
本稿では,制約通信下での協調知覚(CP)の最適化を実現するための新しい手法を提案する。
私たちのアプローチの核心は、視覚範囲を拡大するために、利用可能なフロント車両のリストから最高のヘルパーを募集することだ。
本研究は,協調知覚の全体的な性能向上における2段階最適化プロセスの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-10T15:37:15Z) - Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes [70.08318779492944]
私たちは、より効果的なセグメンテーションのために消滅点(VP)を最初に利用しました。
当社の新しいVSS用ネットワークであるVPSegには,この静的および動的VPプリエントを正確に利用する2つのモジュールが組み込まれています。
論文 参考訳(メタデータ) (2024-01-27T01:01:58Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
本稿では,V2V(Var-to-Vehicle)通信を介して,同志の車両にリアルタイムなデータを提供するフェデレート計測学習システムを提案する。
また,交通ネットワークの予測モデルを作成するために,車両ネットワーク(V2N)リンク上で連合学習スキームを運用している。
その結果,提案方式では学習性能が向上し,アグリゲータサーバ側での盗聴を防止することができた。
論文 参考訳(メタデータ) (2024-01-24T23:11:11Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
本稿では,3つのコンポーネントから構成される新しい3次元オブジェクト検出フレームワークを提案する。
実験結果と帯域使用量分析により,本手法は通信コストと計算コストを削減できることを示した。
論文 参考訳(メタデータ) (2022-05-24T07:17:32Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
我々は、道路上のエージェント間で情報を融合するために、V2X-ViTという全体論的アテンションモデルを構築した。
V2X-ViTは異質なマルチエージェント自己アテンションとマルチスケールウィンドウ自己アテンションの交互層から構成される。
我々のアプローチを検証するために、我々は大規模なV2X知覚データセットを作成します。
論文 参考訳(メタデータ) (2022-03-20T20:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。