論文の概要: LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
- arxiv url: http://arxiv.org/abs/2411.14927v1
- Date: Fri, 22 Nov 2024 13:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:50.169512
- Title: LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation
- Title(参考訳): LiDARを用いた車両とインフラの協調のためのエンド・ツー・エンドの知覚
- Authors: Zhenwei Yang, Jilei Mao, Wenxian Yang, Yibo Ai, Yu Kong, Haibao Yu, Weidong Zhang,
- Abstract要約: LET-VIC(LDAR-based End-to-End Tracking framework for Vehicle-Temporal Cooperation)を紹介する。
LET-VICはV2X通信を利用して、車両とインフラの両方のセンサーから空間データと時間データを融合することで、時間知覚を高める。
V2X-Seq-SPDデータセットの実験では、LET-VICはベースラインモデルよりも優れており、少なくともmAPが13.7%、AMOTAが13.1%改善している。
- 参考スコア(独自算出の注目度): 16.465037559349323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal perception, the ability to detect and track objects over time, is critical in autonomous driving for maintaining a comprehensive understanding of dynamic environments. However, this task is hindered by significant challenges, including incomplete perception caused by occluded objects and observational blind spots, which are common in single-vehicle perception systems. To address these issues, we introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Infrastructure Cooperation (VIC). LET-VIC leverages Vehicle-to-Everything (V2X) communication to enhance temporal perception by fusing spatial and temporal data from both vehicle and infrastructure sensors. First, it spatially integrates Bird's Eye View (BEV) features from vehicle-side and infrastructure-side LiDAR data, creating a comprehensive view that mitigates occlusions and compensates for blind spots. Second, LET-VIC incorporates temporal context across frames, allowing the model to leverage historical data for enhanced tracking stability and accuracy. To further improve robustness, LET-VIC includes a Calibration Error Compensation (CEC) module to address sensor misalignments and ensure precise feature alignment. Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models, achieving at least a 13.7% improvement in mAP and a 13.1% improvement in AMOTA without considering communication delays. This work offers a practical solution and a new research direction for advancing temporal perception in autonomous driving through vehicle-infrastructure cooperation.
- Abstract(参考訳): 時間とともに物体を検出し追跡する能力である時間知覚は、動的環境の包括的な理解を維持するために自律運転において重要である。
しかし、この課題は、閉塞物体による不完全な知覚や、単一車両の知覚システムに共通する観察的盲点など、重大な課題によって妨げられている。
これらの問題に対処するため,LET-VICはLiDARをベースとした車内構造物協調のためのエンド・ツー・エンドトラッキングフレームワークである。
LET-VICはV2X通信を利用して、車両とインフラの両方のセンサーから空間データと時間データを融合することで、時間知覚を高める。
まず、車両側とインフラ側のLiDARデータからBird’s Eye View(BEV)機能を空間的に統合し、閉塞を緩和し、盲点を補償する包括的なビューを作成する。
第2に、LET-VICはフレーム間の時間的コンテキストを取り入れ、履歴データを活用して追跡安定性と精度を向上させる。
堅牢性をさらに向上するため、LET-VICには、センサのミスアライメントに対処し、正確な特徴アライメントを保証するキャリブレーションエラー補償(CEC)モジュールが含まれている。
V2X-Seq-SPDデータセットの実験では、LET-VICはベースラインモデルよりも優れており、少なくともmAPが13.7%、AMOTAが13.1%改善している。
本研究は,車両とインフラの協調による自律走行の時間的知覚を促進するための,実用的なソリューションと新たな研究方向を提供する。
関連論文リスト
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++は、連続するカメラペアを使用して事前トレーニングと下流タスクを統合する新しいフレームワークである。
SuperFlow++は様々なタスクや運転条件で最先端のメソッドよりも優れています。
強力な一般化性と計算効率により、SuperFlow++は、自動運転におけるデータ効率の高いLiDARベースの認識のための新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2025-03-25T17:59:57Z) - Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark [15.405137983083875]
航空と地上の協力は、UAVの空中視界と地上の車両の局部的な観測を統合することで、有望な解決策を提供する。
本稿では,3つの重要な貢献を通じて,地上3次元協調認識のための包括的ソリューションを提案する。
論文 参考訳(メタデータ) (2025-03-10T07:00:07Z) - InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios [13.821143687548494]
本稿では,新しい3次元インフラ側協調認識データセットについて紹介する。
InScopeは303の追跡軌道と187,787個の3D境界ボックスで20日間の捕獲期間をカプセル化している。
論文 参考訳(メタデータ) (2024-07-31T13:11:14Z) - V2I-Calib: A Novel Calibration Approach for Collaborative Vehicle and Infrastructure LiDAR Systems [19.919120489121987]
本稿では,V2Iキャリブレーションに新たなアプローチを導入し,知覚対象間の空間的関連情報を活用する。
この手法の中心は、車両とインフラシステムによって識別されるターゲット間の相関を定量化する、イノベーティブなOIoU(Intersection over Union)計量である。
当社のアプローチでは,親和性行列の構築を通じて,車両とインフラのLiDARシステムの認識結果における共通目標の同定を行う。
論文 参考訳(メタデータ) (2024-07-14T13:34:00Z) - Unified End-to-End V2X Cooperative Autonomous Driving [21.631099800753795]
UniE2EV2Xは、V2Xに統合されたエンドツーエンドの自動運転システムで、主要な駆動モジュールを統合ネットワーク内で統合する。
このフレームワークは変形可能な注意ベースのデータ融合戦略を採用し、車とインフラの協調を効果的に促進する。
We implement the UniE2EV2X framework on the challenge DeepAccident, a simulation dataset designed for V2X collaborative driving。
論文 参考訳(メタデータ) (2024-05-07T03:01:40Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric
Heterogenous Distillation Network [13.248981195106069]
車両間協調認識システム(V2X-AHD)を提案する。
この研究によると、V2X-AHDは3次元物体検出の精度を効果的に向上し、ネットワークパラメータの数を削減できる。
論文 参考訳(メタデータ) (2023-10-10T13:12:03Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - MASS: Mobility-Aware Sensor Scheduling of Cooperative Perception for
Connected Automated Driving [19.66714697653504]
コラボレーティブ・パーセプション(CP)と呼ばれる新しいパラダイムが、コラボレーティブ・ビークル(CoV)からのセンサデータを共有することで救助にやってくる。
既存の方法は、近くの車両からの知覚の利得を予測するために、可視性マップのようなメタ情報交換に依存している。
CPの分散スケジューリングにおいて,スケジューリング中に学習する新しい手法を提案する。
提案したMASSアルゴリズムは,他の学習ベースアルゴリズムと比較して,最大4.2ポイントのリコール率向上を実現している。
論文 参考訳(メタデータ) (2023-02-25T09:03:05Z) - Adaptive Feature Fusion for Cooperative Perception using LiDAR Point
Clouds [0.0]
協調認識により、コネクテッド・オートモービルは近隣の他のCAVと対話することができる。
盲点、低解像度、気象効果などの従来の車体知覚の限界を補うことができる。
CODDデータセットを用いた車両と歩行者の両方の協調認識性能の評価を行った。
論文 参考訳(メタデータ) (2022-07-30T01:53:05Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative
3D Object Detection [8.681912341444901]
DAIR-V2Xは、自動車・インフラ協調自律運転の現実シナリオから得られた、最初の大規模でマルチモードのマルチビューデータセットである。
DAIR-V2Xは71254のLiDARフレームと71254のカメラフレームで構成される。
論文 参考訳(メタデータ) (2022-04-12T07:13:33Z) - Multi-Stream Attention Learning for Monocular Vehicle Velocity and
Inter-Vehicle Distance Estimation [25.103483428654375]
車両速度と車間距離の推定は、ADAS(Advanced driver-assistance system)と自律走行車にとって不可欠である。
近年の研究では、低コストの単眼カメラを用いて、車周りの環境をデータ駆動方式で知覚することに焦点を当てている。
MSANetは、例えば、共同走行速度と車間距離推定のための空間的特徴と文脈的特徴の異なる特徴を抽出するために提案されている。
論文 参考訳(メタデータ) (2021-10-22T06:14:12Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Improving Perception via Sensor Placement: Designing Multi-LiDAR Systems
for Autonomous Vehicles [16.45799795374353]
確率的占有グリッド(POG)に基づく計算が容易な情報理論的サーロゲートコストメトリックを提案し、最大センシングのためのLiDAR配置を最適化する。
以上の結果から,センサ配置は3Dポイントクラウドによる物体検出において重要な要素であり,最先端の認識アルゴリズムでは10%の精度で性能が変動する可能性が示唆された。
論文 参考訳(メタデータ) (2021-05-02T01:52:18Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-in-kind dataset with 10 different LiDAR sensor。
LIBREは、現在利用可能なLiDARを公平に比較するための手段を提供するために、研究コミュニティに貢献する。
また、既存の自動運転車やロボティクス関連のソフトウェアの改善も促進する。
論文 参考訳(メタデータ) (2020-03-13T06:17:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。