Self-Improvement for Neural Combinatorial Optimization: Sample without Replacement, but Improvement
- URL: http://arxiv.org/abs/2403.15180v2
- Date: Tue, 11 Jun 2024 19:48:33 GMT
- Title: Self-Improvement for Neural Combinatorial Optimization: Sample without Replacement, but Improvement
- Authors: Jonathan Pirnay, Dominik G. Grimm,
- Abstract summary: Current methods for constructive neural optimization usually train a policy using behavior cloning from expert solutions or policy gradient methods from reinforcement learning.
We bridge the two by sampling multiple solutions for random instances using the current model in each epoch and then selecting the best solution as an expert trajectory for supervised imitation learning.
We evaluate our approach on the Traveling Salesman Problem and the Capacitated Vehicle Routing Problem. The models trained with our method achieve comparable performance and generalization to those trained with expert data.
- Score: 1.1510009152620668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for end-to-end constructive neural combinatorial optimization usually train a policy using behavior cloning from expert solutions or policy gradient methods from reinforcement learning. While behavior cloning is straightforward, it requires expensive expert solutions, and policy gradient methods are often computationally demanding and complex to fine-tune. In this work, we bridge the two and simplify the training process by sampling multiple solutions for random instances using the current model in each epoch and then selecting the best solution as an expert trajectory for supervised imitation learning. To achieve progressively improving solutions with minimal sampling, we introduce a method that combines round-wise Stochastic Beam Search with an update strategy derived from a provable policy improvement. This strategy refines the policy between rounds by utilizing the advantage of the sampled sequences with almost no computational overhead. We evaluate our approach on the Traveling Salesman Problem and the Capacitated Vehicle Routing Problem. The models trained with our method achieve comparable performance and generalization to those trained with expert data. Additionally, we apply our method to the Job Shop Scheduling Problem using a transformer-based architecture and outperform existing state-of-the-art methods by a wide margin.
Related papers
- Take a Step and Reconsider: Sequence Decoding for Self-Improved Neural Combinatorial Optimization [1.1510009152620668]
We present a simple and problem-independent sequence decoding method for self-improved learning.
By modifying the policy to ignore previously sampled sequences, we force it to consider only unseen alternatives.
Our method outperforms previous NCO approaches on the Job Shop Scheduling Problem.
arXiv Detail & Related papers (2024-07-24T12:06:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Contrastive Losses and Solution Caching for Predict-and-Optimize [19.31153168397003]
We use a Noise Contrastive approach to motivate a family of surrogate loss functions.
We address a major bottleneck of all predict-and-optimize approaches.
We show that even a very slow growth rate is enough to match the quality of state-of-the-art methods.
arXiv Detail & Related papers (2020-11-10T19:09:12Z) - Lane-Merging Using Policy-based Reinforcement Learning and
Post-Optimization [0.0]
We combine policy-based reinforcement learning with local optimization to foster and synthesize the best of the two methodologies.
We evaluate the proposed method using lane-change scenarios with a varying number of vehicles.
arXiv Detail & Related papers (2020-03-06T12:57:25Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z) - Reward-Conditioned Policies [100.64167842905069]
imitation learning requires near-optimal expert data.
Can we learn effective policies via supervised learning without demonstrations?
We show how such an approach can be derived as a principled method for policy search.
arXiv Detail & Related papers (2019-12-31T18:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.