Robust optimization for adversarial learning with finite sample complexity guarantees
- URL: http://arxiv.org/abs/2403.15207v1
- Date: Fri, 22 Mar 2024 13:49:53 GMT
- Title: Robust optimization for adversarial learning with finite sample complexity guarantees
- Authors: André Bertolace, Konstatinos Gatsis, Kostas Margellos,
- Abstract summary: In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers.
We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios.
Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models.
- Score: 1.8434042562191815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes [37.15580574143281]
offline reinforcement learning (RL)
This paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data.
We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions.
arXiv Detail & Related papers (2024-03-19T17:48:42Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - Adversarial Robustness via Fisher-Rao Regularization [33.134075068748984]
Adrial robustness has become a topic of growing interest in machine learning.
Fire is a new Fisher-Rao regularization for the categorical cross-entropy loss.
arXiv Detail & Related papers (2021-06-12T04:12:58Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Data-Driven Robust Optimization using Unsupervised Deep Learning [0.0]
We show that a trained neural network can be integrated into a robust optimization model by formulating the adversarial problem as a convex mixed-integer program.
We find that this approach outperforms a similar approach using kernel-based support vector sets.
arXiv Detail & Related papers (2020-11-19T11:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.