Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks
- URL: http://arxiv.org/abs/2403.15248v1
- Date: Fri, 22 Mar 2024 14:46:51 GMT
- Title: Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks
- Authors: Sudhir Sornapudi, Rajhans Singh,
- Abstract summary: Computer vision in agriculture is game-changing to transform farming into a data-driven, precise, and sustainable industry.
Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets.
We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images.
- Score: 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision in agriculture is game-changing with its ability to transform farming into a data-driven, precise, and sustainable industry. Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets. This remains a bottleneck as manual labeling is error-prone, time-consuming, and expensive. The lack of efficient labeling approaches inspired us to consider self-supervised learning as a paradigm shift, learning meaningful feature representations from raw agricultural image data. In this work, we explore how self-supervised representation learning unlocks the potential applicability to diverse agriculture vision tasks by eliminating the need for large-scale annotated datasets. We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images. Our experimental analysis and results indicate that the model learns robust features applicable to a broad range of downstream agriculture tasks discussed in the paper. Additionally, the reduced reliance on annotated data makes our approach more cost-effective and accessible, paving the way for broader adoption of computer vision in agriculture.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain [29.395926321984565]
We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields.
Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time.
We provide benchmarks for various tasks on a hidden test set comprised of different fields.
arXiv Detail & Related papers (2023-06-07T16:04:08Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
generative adversarial network (GAN) invented in 2014 in the computer vision community, provides suite of novel approaches that can learn good data representations.
This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture.
arXiv Detail & Related papers (2022-04-10T15:33:05Z) - An Ontological Knowledge Representation for Smart Agriculture [1.5484595752241122]
An agricultural framework for smart systems is presented in this study.
The knowledge graph is represented as a lattice to capture and perform reasoning on-temporal agricultural data.
arXiv Detail & Related papers (2021-12-21T14:58:04Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
Self-supervised representation learning has achieved remarkable success in recent years.
Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn from environments.
We propose a framework, curious representation learning, which jointly learns a reinforcement learning policy and a visual representation model.
arXiv Detail & Related papers (2021-05-03T17:59:20Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - Laplacian Denoising Autoencoder [114.21219514831343]
We propose to learn data representations with a novel type of denoising autoencoder.
The noisy input data is generated by corrupting latent clean data in the gradient domain.
Experiments on several visual benchmarks demonstrate that better representations can be learned with the proposed approach.
arXiv Detail & Related papers (2020-03-30T16:52:39Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.