Edge-AI for Agriculture: Lightweight Vision Models for Disease Detection in Resource-Limited Settings
- URL: http://arxiv.org/abs/2412.18635v1
- Date: Mon, 23 Dec 2024 06:48:50 GMT
- Title: Edge-AI for Agriculture: Lightweight Vision Models for Disease Detection in Resource-Limited Settings
- Authors: Harsh Joshi,
- Abstract summary: The proposed system integrates advanced object detection, classification, and segmentation models, optimized for deployment on edge devices.
The study evaluates the performance of various state-of-the-art models, focusing on their accuracy, computational efficiency, and generalization capabilities.
- Score: 0.0
- License:
- Abstract: This research paper presents the development of a lightweight and efficient computer vision pipeline aimed at assisting farmers in detecting orange diseases using minimal resources. The proposed system integrates advanced object detection, classification, and segmentation models, optimized for deployment on edge devices, ensuring functionality in resource-limited environments. The study evaluates the performance of various state-of-the-art models, focusing on their accuracy, computational efficiency, and generalization capabilities. Notable findings include the Vision Transformer achieving 96 accuracy in orange species classification and the lightweight YOLOv8-S model demonstrating exceptional object detection performance with minimal computational overhead. The research highlights the potential of modern deep learning architectures to address critical agricultural challenges, emphasizing the importance of model complexity versus practical utility. Future work will explore expanding datasets, model compression techniques, and federated learning to enhance the applicability of these systems in diverse agricultural contexts, ultimately contributing to more sustainable farming practices.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Enhanced Infield Agriculture with Interpretable Machine Learning Approaches for Crop Classification [0.49110747024865004]
This research evaluates four different approaches for crop classification, namely traditional ML with handcrafted feature extraction methods like SIFT, ORB, and Color Histogram; Custom Designed CNN and established DL architecture like AlexNet; transfer learning on five models pre-trained using ImageNet.
Xception outperformed all of them in terms of generalization, achieving 98% accuracy on the test data, with a model size of 80.03 MB and a prediction time of 0.0633 seconds.
arXiv Detail & Related papers (2024-08-22T14:20:34Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
Foundation models are large-scale, pre-trained AI models capable of performing a wide array of tasks with unprecedented accuracy and efficiency.
This survey aims to serve as a resource for researchers and practitioners by providing a panorama of advances and promising pathways for continued development and application of foundation models in remote sensing.
arXiv Detail & Related papers (2024-08-06T22:39:34Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
Grasslands are known for their high biodiversity and ability to provide multiple ecosystem services.
Challenges in automating the identification of indicator plants are key obstacles to large-scale grassland monitoring.
This paper delves into the latter two challenges, with a specific focus on transfer learning and XAI approaches to grassland monitoring.
arXiv Detail & Related papers (2023-12-13T10:17:48Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
generative adversarial network (GAN) invented in 2014 in the computer vision community, provides suite of novel approaches that can learn good data representations.
This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture.
arXiv Detail & Related papers (2022-04-10T15:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.