Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- URL: http://arxiv.org/abs/2403.15405v3
- Date: Wed, 12 Feb 2025 10:33:58 GMT
- Title: Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
- Authors: Elodie Germani, Nikhil Baghwat, Mathieu Dugré, Rémi Gau, Albert Montillo, Kevin Nguyen, Andrzej Sokolowski, Madeleine Sharp, Jean-Baptiste Poline, Tristan Glatard,
- Abstract summary: Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression.
Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability related for instance to cohort selection or image analysis.
This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD.
- Score: 1.621204680136386
- License:
- Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability related for instance to cohort selection or image analysis. In this context, an evaluation of the robustness of such biomarkers to variations in the data processing workflow is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to reproduce (re-implementing the experiments with the same data, same method) and replicate (different data and/or method) the models described in [1] to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in [1] and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. Different criteria were used to evaluate the reproduction and compare the reproduced results with the original ones. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 \> 0), which is consistent with its findings. Moreover, using derived data provided by the authors of the original study, we were able to make an exact reproduction and managed to obtain results that were close to the original ones. The challenges encountered while reproducing and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.
Related papers
- Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
We train a novel architecture to build a latent space distribution which can be sampled from to generate future predictions of changing anatomy.
By comparing to several alternatives, we show that our model produces more individualized images with higher resolution.
arXiv Detail & Related papers (2024-08-04T13:09:06Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
We show how a deep conditional generative model can be used to perturb local imaging features in baseline images that are pertinent to subject-specific future disease evolution.
Our model produces counterfactuals with changes in imaging features that reflect established clinical markers predictive of future MRI lesional activity at the population level.
arXiv Detail & Related papers (2022-08-03T18:58:45Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
Graph neural networks (GNNs) have witnessed an unprecedented proliferation in tackling several problems in computer vision, computer-aided diagnosis, and related fields.
While prior studies have focused on boosting the model accuracy, quantifying the most discriminative features identified by GNNs is still an intact problem that yields concerns about their reliability in clinical applications in particular.
We propose for the first time, a framework for GNN assessment via the most discriminative features (i.e., biomarkers) shared between different models. To ascertain the soundness of our framework, the assessment embraces variations of different factors such as training strategies and
arXiv Detail & Related papers (2021-09-06T05:31:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
We take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution.
We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative cohort.
We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space.
arXiv Detail & Related papers (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.