論文の概要: Loops On Retrieval Augmented Generation (LoRAG)
- arxiv url: http://arxiv.org/abs/2403.15450v1
- Date: Mon, 18 Mar 2024 15:19:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 02:44:33.712780
- Title: Loops On Retrieval Augmented Generation (LoRAG)
- Title(参考訳): 検索拡張世代(LoRAG)のループ
- Authors: Ayush Thakur, Rashmi Vashisth,
- Abstract要約: Loops On Retrieval Augmented Generation (LoRAG)は、検索強化テキスト生成の品質を高めるために設計された新しいフレームワークである。
アーキテクチャは、生成モデル、検索機構、動的ループモジュールを統合する。
LoRAGはBLEUスコア、ROUGEスコア、パープレキシティの点で既存の最先端モデルを上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Loops On Retrieval Augmented Generation (LoRAG), a new framework designed to enhance the quality of retrieval-augmented text generation through the incorporation of an iterative loop mechanism. The architecture integrates a generative model, a retrieval mechanism, and a dynamic loop module, allowing for iterative refinement of the generated text through interactions with relevant information retrieved from the input context. Experimental evaluations on benchmark datasets demonstrate that LoRAG surpasses existing state-of-the-art models in terms of BLEU score, ROUGE score, and perplexity, showcasing its effectiveness in achieving both coherence and relevance in generated text. The qualitative assessment further illustrates LoRAG's capability to produce contextually rich and coherent outputs. This research contributes valuable insights into the potential of iterative loops in mitigating challenges in text generation, positioning LoRAG as a promising advancement in the field.
- Abstract(参考訳): 本稿では,反復ループ機構の導入による検索強化テキスト生成の品質向上を目的とした新しいフレームワークであるLoRAGについて述べる。
このアーキテクチャは、生成モデル、検索機構、動的ループモジュールを統合し、入力コンテキストから取得した関連情報との相互作用を通じて生成されたテキストを反復的に洗練することができる。
ベンチマークデータセットの実験的評価では、LORAGはBLEUスコア、ROUGEスコア、パープレキシティの点で既存の最先端モデルを超えており、生成されたテキストのコヒーレンスと関連性の両方を達成する上での有効性を示している。
質的な評価は、文脈的にリッチで一貫性のある出力を生成するLORAGの能力をさらに示している。
本研究は,テキスト生成における課題の緩和における反復ループの可能性について,LoRAGをこの分野における有望な進歩と位置づけた貴重な知見を提供する。
関連論文リスト
- ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data [4.769236554995528]
Retrieval augmented generation (RAG)は、生成モデル出力を制限し、幻覚の可能性を緩和する機能を提供する。
本稿では,クエリ中心の回答生成のための2層RAGフレームワークを提案し,ソーシャルメディアフォーラムからクエリ中心の要約生成の文脈において,このフレームワークの概念実証を評価する。
論文 参考訳(メタデータ) (2024-05-29T20:56:52Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
トポロジを意識した検索型検索生成フレームワークを開発した。
このフレームワークは、トポロジ的関係に基づいてテキストを選択する検索モジュールを含む。
我々は,確立したテキスト配信ネットワークをキュレートし,本フレームワークの有効性を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2024-05-27T19:02:18Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Distillation Enhanced Generative Retrieval [96.69326099136289]
生成的検索はテキスト検索において有望な新しいパラダイムであり、関連する通路の識別子文字列を検索対象として生成する。
本研究は, 蒸留による生成的検索をさらに促進するための有効な方向を特定し, DGR という名称の実行可能なフレームワークを提案する。
本研究では,4つの公開データセットに対して実験を行い,DGRが生成的検索手法の最先端性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-16T15:48:24Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
本稿では,画像検索を生成モデルの一種として再フレーミングする新しい手法を提案する。
我々は、イメージを意味単位の簡潔なシーケンスに変換するという技術的課題に対処するため、IRGenと呼ばれるモデルを開発した。
本モデルは,広範に使用されている3つの画像検索ベンチマークと200万件のデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-17T17:07:36Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
PRFに基づくクエリ拡張にテキスト生成モデルを効果的に統合する新しい手法を提案する。
提案手法では,初期クエリと擬似関連フィードバックの両方を条件としたニューラルテキスト生成モデルを用いて,拡張クエリ項を生成する。
2つのベンチマークデータセットを用いて,情報検索タスクに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2021-08-13T01:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。