論文の概要: Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
- arxiv url: http://arxiv.org/abs/2405.19519v1
- Date: Wed, 29 May 2024 20:56:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-31 19:06:28.631420
- Title: Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
- Title(参考訳): 低リソース医療質問応答のための2層検索拡張フレームワーク:Redditデータを用いた概念実証
- Authors: Sudeshna Das, Yao Ge, Yuting Guo, Swati Rajwal, JaMor Hairston, Jeanne Powell, Drew Walker, Snigdha Peddireddy, Sahithi Lakamana, Selen Bozkurt, Matthew Reyna, Reza Sameni, Yunyu Xiao, Sangmi Kim, Rasheeta Chandler, Natalie Hernandez, Danielle Mowery, Rachel Wightman, Jennifer Love, Anthony Spadaro, Jeanmarie Perrone, Abeed Sarker,
- Abstract要約: Retrieval augmented generation (RAG)は、生成モデル出力を制限し、幻覚の可能性を緩和する機能を提供する。
本稿では,クエリ中心の回答生成のための2層RAGフレームワークを提案し,ソーシャルメディアフォーラムからクエリ中心の要約生成の文脈において,このフレームワークの概念実証を評価する。
- 参考スコア(独自算出の注目度): 4.769236554995528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
- Abstract(参考訳): Retrieval augmented generation(RAG)は、生成モデル出力を制限し、関連するインコンテキストテキストを提供することで幻覚の可能性を軽減する能力を提供する。
生成的大言語モデル(LLM)は、文脈が有限であるため、トークンの数を組み込むことができるため、答えを生成するための知識の量を制限することができる。
本稿では,クエリに着目した回答生成のための2層RAGフレームワークを提案する。
評価は,資源制約設定における2層フレームワークの有効性を示し,研究者がユーザからリアルタイムに近いデータを得ることを可能にする。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
本稿では,ゼロショット環境での大規模言語モデル(LLM)を用いた臨床QAデータの生成について検討する。
ナイーブなプロンプトが臨床シナリオの複雑さを反映しない簡単な質問をもたらすことがよくあります。
2つの臨床QAデータセットを用いた実験により,本手法はより難解な質問を発生し,ベースライン上での微調整性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-12-05T19:35:41Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
幻覚は、言語モデルがそのパラメトリック知識の外で生成タスクが与えられるときに起こる。
この制限に対処するための一般的な戦略は、言語モデルに検索メカニズムを注入することである。
我々は,幻覚の頻度をさらに減少させるために,探索のガイドとして計画をどのように利用できるかを分析する。
論文 参考訳(メタデータ) (2024-08-20T02:19:35Z) - RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models [35.60385437194243]
現在の医療用大規模視覚言語モデル(Med-LVLM)は、しばしば現実の問題に遭遇する。
外部知識を利用するRAGは、これらのモデルの現実的精度を向上させることができるが、2つの大きな課題を提起する。
本稿では,2つのコンポーネントからなるRULEを提案する。まず,検索したコンテキストの選択を通じて事実性リスクを制御するための有効な戦略を提案する。
次に、検索したコンテキストへの過度な依存がエラーを引き起こしたサンプルに基づいて、選好データセットをキュレートしてモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-06T16:45:07Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-27T14:00:11Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
大型言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
二重角評価による検索拡張生成フレームワーク textitThink-then-Act を提案する。
論文 参考訳(メタデータ) (2024-06-18T20:51:34Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
トポロジを意識した検索型検索生成フレームワークを開発した。
このフレームワークは、トポロジ的関係に基づいてテキストを選択する検索モジュールを含む。
我々は,確立したテキスト配信ネットワークをキュレートし,本フレームワークの有効性を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2024-05-27T19:02:18Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Loops On Retrieval Augmented Generation (LoRAG) [0.0]
Loops On Retrieval Augmented Generation (LoRAG)は、検索強化テキスト生成の品質を高めるために設計された新しいフレームワークである。
アーキテクチャは、生成モデル、検索機構、動的ループモジュールを統合する。
LoRAGはBLEUスコア、ROUGEスコア、パープレキシティの点で既存の最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-03-18T15:19:17Z) - MedInsight: A Multi-Source Context Augmentation Framework for Generating
Patient-Centric Medical Responses using Large Language Models [3.0874677990361246]
大きな言語モデル(LLM)は、人間のような応答を生成する素晴らしい能力を示している。
我々は,LLM入力を関連背景情報で拡張する新しい検索フレームワークMedInsightを提案する。
MTSamplesデータセットの実験は、文脈的に適切な医療応答を生成するMedInsightの有効性を検証する。
論文 参考訳(メタデータ) (2024-03-13T15:20:30Z) - OpenLEAF: Open-Domain Interleaved Image-Text Generation and Evaluation [151.57313182844936]
本稿では,大規模言語モデル(LLM)と事前学習されたテキスト・ツー・イメージ(T2I)モデル,すなわちOpenLEAFに基づく新たなインターリーブ生成フレームワークを提案する。
まず,大規模マルチモーダルモデル(LMM)を用いて,オープンドメインのインターリーブ画像-テキストシーケンスのエンティティとスタイルのコンピテンシーを評価することを提案する。
論文 参考訳(メタデータ) (2023-10-11T17:58:33Z) - Generating Explanations in Medical Question-Answering by Expectation
Maximization Inference over Evidence [33.018873142559286]
本稿では,医療用QAシステムによって予測される回答に対して,自然言語による説明を生成するための新しい手法を提案する。
本システムは,説明生成過程における説明の質を高めるために,医学教科書から知識を抽出する。
論文 参考訳(メタデータ) (2023-10-02T16:00:37Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
医療領域に適応したマルチモーダル・数ショット学習者であるMed-Flamingoを提案する。
OpenFlamingo-9Bに基づいて、出版物や教科書からの医療画像テキストデータのペア化とインターリーブ化を継続する。
本研究は,医療用VQA(ジェネレーティブ医療用VQA)の最初の人間評価である。
論文 参考訳(メタデータ) (2023-07-27T20:36:02Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
PRFに基づくクエリ拡張にテキスト生成モデルを効果的に統合する新しい手法を提案する。
提案手法では,初期クエリと擬似関連フィードバックの両方を条件としたニューラルテキスト生成モデルを用いて,拡張クエリ項を生成する。
2つのベンチマークデータセットを用いて,情報検索タスクに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2021-08-13T01:09:02Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z) - Adversarial Mutual Information for Text Generation [62.974883143784616]
本稿では,テキスト生成フレームワーク(AMI:Adversarial Mutual Information)を提案する。
AMIは、ソースとターゲット間の共同相互作用を特定することを目的とした、新しいサドル点(min-max)最適化として形成される。
AMIは、最大相互情報のより狭い範囲に導かれる可能性があることを示す。
論文 参考訳(メタデータ) (2020-06-30T19:11:51Z) - A Controllable Model of Grounded Response Generation [122.7121624884747]
現在のエンドツーエンドのニューラルネットワークモデルは、応答生成プロセスにセマンティックコントロールを課す柔軟性を本質的に欠いている。
我々は制御可能な接地応答生成(CGRG)と呼ばれるフレームワークを提案する。
このフレームワークを用いることで、会話のようなRedditデータセットでトレーニングされた、新しいインダクティブアテンション機構を備えたトランスフォーマーベースのモデルが、強力な生成ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-05-01T21:22:08Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。